Homestake DUSEL

Contributions to the S-1 Approach

W. Roggenthen
SD School of Mines and Tech.
The Homestake Mine

World-class gold deposit - produced 40 million ounces of gold
• General Geologic Setting
 - Regional
 - Local
 - X-section of the potential laboratory

• Attributes from the standpoint of a Homestake site

• Classes of experiments that are supported by a Homestake site
Crystalline basement of the mid-continent
Crystalline basement of the mid-continent
Location

- Northern Black Hills of western South Dakota.
- An elongate domal Laramide uplift 100 km long and 60 km wide.
- Core of Precambrian phyllite, schist, and granite flanked by Phanerozoic sedimentary rocks.

Modified from Caddey, et al. (1991)
General Geology

- Rocks are approximately 2 billion years old; tuff unit dated at 1.94 b.y.
- Metamorphic rocks consist of muscovite-and/or biotite phyllite/schist, dolomite, metaclastics, iron-formation, and amphibolite.
- Metamorphic grade ranges from lower greenschist to middle amphibolite facies.
- Complexly deformed geologic terrain.
Geologic Events

- Intrusion - rhyolites and phonolites ~53 my
- Regional uplift and erosion ~65 my
- Deposition beginning in middle Cambrian
- Uplift and erosion
- Metamorphism ~ 1.75 by
- Metamorphism ~ 1.84 by
- Deposition ~ 1.9 by
Homestake stratigraphy

Three most pertinent units

- Ellison formation
- Homestake formation
- Poorman formation

Bachman and Caddey, 1990
Poorman Formation

– base (Yates Member) consists of metamorphosed tholeiitic basalt with possible back-arc basin affinities

– remaining Poorman lithologies are metamorphosed equivalents of dirty dolomite, banded carbonate-rich claystone and siltstone, marl, iron formation, carbonaceous pyrrhotite-bearing siliceous exhalite, and interbedded tuffs.

– interpreted as chemical precipitates with fine-grained terrigenous detrital material

Campbell, 2004
Yates Member or Lower Unit

- Serves as the approximate base of the Poorman Formation.
- Hornblende-plagioclase schist.
- Massive, blocky exposures; fine- to medium-grained; exhibits local relic pillow structures; no vesicles.
- Occurs as several large masses at base of Poorman Formation.
- Numerous interbedded lithologies along margins; conformable contacts.
- Local alteration zones.

Campbell, 2004
Homestake Formation

- transition to Fe and Mg carbonate chemical precipitation and iron formation

- Multiple horizons of carbonate facies iron formation interlayered with marl

Campbell, 2004
Homestake Formation
Ellison Formation

– metaclastic sequence

– dominated by feldspathic litharenite with abundant shale, siltstone, and tuffaceous units
• Heterolithic unit comprised of metaclastics, muscovite and biotite phyllite, and sericite-ankerite-albite-quartz phyllite.

• Thickness ranges from 700 to 1,500 m.

Campbell, 2004
Environments of deposition

Poorman deposition (Yates Member)

Homestake deposition

Ellison deposition

H-DUSEL

Rogers, 1990
Local Geology

Slaughter, 1968
Local Geology

Slaughter, 1968
HOMESTAKE MINE CROSS-SECTION

Bachman and Caddey, 1990
HOMESTAKE MINE Longitudinal Section
Metamorphic grade

- middle greenschist in the western part of the mine

- middle amphibolite facies in the deep, eastern section of the mine
Diamond Core Drilling

- Represents the best sample obtainable for geologic, structural, and engineering purposes.
Homestake Core Repository
• Can be integrated with Homestake Mine digital (Vulcan database) and paper archive (including geochemistry)

• Current inventory comprises 700,000 feet of core from surface and underground.
Homestake Core Repository

- Prototype for Precambrian iron-formation hosted gold deposits. Produced 40+ million ounces of Au.

- Mine provides in-situ study of a significant block of the Earth’s Paleoproterozoic crust

- Physical limits of the proposed laboratory
 - volume of rock exposed by workings -- 2.7 x 2.5 x 5 km
 - 6.5 km of plunge length
 - >500 km of drifts
 - core expands this to 6 x 3 x 14 km
Information Obtainable From Core

- Mineralogy and rock type.
- Large-scale structural information, fracture type and fracture density.
- Physical properties and critical rock mechanics data for underground engineering purposes.
- Determine distribution of rock types based on sprays of drill holes.
- Geochemistry and lithologic pressure-temperature conditions.
Attributes

- mechanical stability
 - Offset by a desire from some quarters for rock burst studies

- early access

- room to grow”

- multiple exits (safety)

- not encumbered by routine mining operations
Attributes (cont’d)

• Should be well-characterized (large volume of rock --- only pleasant surprises)
 • varied rock types
 • low water inflow
 • possibly low radioactivity
Infrastructure

e.g.

- Rock handling capability (7000 tons/day)

- Locations for waste disposal
 - skip to the surface
 - dispose/store underground
Classes of Experiments

Experiments requiring vertical access:
- cloud physics
- drop tube experiments

Experiments requiring great access
- controlled fluid introduction
- may need access above/below
Classes (cont’d)

Experiments requiring distance from physics facilities

- fracture-inducing experiments
- destructive experiments (thermal, shock, fluids)
- new drifts and experiments requiring virgin territory
Classes (cont’d)

Experiments requiring large volumes of rock to be instrumented or studied
 – geohydrology
 – geochemistry
 – seismic studies
 – electromagnetic studies

• natural fractures
 – where do you find them?
 – important to have a large volume in which to search
Outreach

- easy access
- interested local population
- local underserved population
- high visitation (tourist area?)