Neutron Sources Globally

Phil Ferguson
Neutron Source Development Group Leader
Spallation Neutron Source

International Workshop on Accelerator-Driven
Sub-Critical Systems & Thorium Utilization
Blacksburg, VA
September 27-29, 2010
Neutron sources…

general term referring to a variety of devices that emit neutrons, irrespective of the mechanism used to produce the neutrons

- **Small**
 - Spontaneous fission, \((\alpha, n), (\gamma, n), n\) generators

- **Medium**
 - Plasma focus/pinch devices, light ion accelerators, photoneutron/photofission systems

- **Large**
 - Reactors, fusion devices (NIF, JET, etc.), spallation sources

We’ll focus on large facilities
What are the needs?

- From a target point of view
 - High beam power capability
 - High reliability
 - High availability
 - Good conversion efficiency (n/p)
 - Low absorption cross section
 - Minimize R&D

- Spallation targets are designed for a variety of applications
 - High brightness (peak flux)
 - SNS, JPARC, ISIS
 - Average brightness (flux over a large area)
 - APT, MTS, UCN sources

Source design should be customized for the application.
Focus on some accelerator neutron sources

• High-power
 – LAMPF/LANSCE
 • APT project
 – SINQ/MegaPIE
 – ESS/SNS/JPARC
 – Eurisol

• ADS specific
 – RACE

What has occurred over the last 15 years that we can use?

• Basic source neutronics
Los Alamos Neutron Science Center
(or Los Alamos Meson Physics Facility)

• 800-Mev, nominally 1 mA proton beam
• 800-MeV reached in 1972
• Three beams: H+, H-, p-
• Highest power proton linac for many years
• Contributions:
 – High power capability
 – Solid target technology
 – Radiation damage to materials
 – Code verification & validation
Solid (W) targets at LANL

- **Plate targets (~14 µA/cm²)**
 - Same peak current density as SNS

- **Rod targets (~70 µA/cm²)**
 - Bare
 - Clad

LANL contributions from S. Maloy
Decrease in Diameter of Bare Tungsten Rods Confirmed Tungsten Corrosion Rate

- Capsule irradiated for 2 months in 800 MeV, 1 mA proton beam (~2x10^{21} \text{ p/cm}^2)
- Measured the diameter of all 19 tungsten rods in the leading rod bundle
- The loss of tungsten on rods scaled with Gaussian beam shape
- Implied corrosion rate of ~1 mm/year
- Measured Helium concentration of ~740 appm
Removal of Tungsten Neutron Source After Irradiation

- Clad Tungsten Source cut from Insert and transported to CMR Hot Cells
- Peak proton density $\sim 70 \mu A/cm^2$
- Helium leak test performed in hot cells showed clad rods still leak tight after irradiation
- Discoloration on outside surface due to high nitric acid irradiation environment
Compression Stress/Strain Results for Irradiated Tungsten Show Increase in Yield Stress with Dose above 4 dpa

Stress/Strain Curves for Tungsten Irradiated to 4-23 dpa

Stress, σ/MPa

Strain, ε/%
Code V&V: Decay heat experiment

Phosphor

W target

p
Calculated and measured decay heat

2 decay heat measurements
Multiple n/p measurements
Energy deposition
Radionuclide production
Materials damage
Materials corrosion experiments

Elapsed time since beam-off (h)
SINQ (Paul Scherrer Institut)

- ~570-MeV protons incident on a solid target, ~1.2 MW
- Continuous source
- Vertical beam insertion upward
- Contributions:
 - Continuous operation with high reliability
 - High-power liquid metal target demonstration
 - Radiochemistry of liquid metal targets
 - Beam on target imaging
 - Materials irradiation data

SINQ contributions from M. Wohlmuther, J. Neuhausen
High reliability operations

• During MegaPIE startup

• One significant trip in 12 hours (more than ~1 minute)

• Probably good enough for a transmutation demonstration
MegaPIE target at SINQ

- LBE target installed in existing solid target location
- Full process, from design to safety evaluation, from licensing to high-power operations
- Operated from August 14, 2006 to the end of 2006
Target disassembly

- The aluminum safety hull was removed July 2009
- Picture: The “remains” of the Leak Detector (LD)
- Black smut was deposited on one side of the LD
- The beam entrance window region looked whitish/lucent
Samples for analysis

TC3

H06

H07

H08

H09

MegaPIE has produced over 1,000 samples for analysis

PIE starts in 2011
Po extraction from LBE: Results

- Influence of gas plenum
- Temperature curves
- Influence of water content of (Na,K)OH
- Relative amounts of LBE/MOH

![Graph showing Po extraction from LBE under different gas atmospheres and temperatures.](image-url)
Beam on target monitoring: VIMOS

- Tungsten mesh through which the beam passes
- Beam profile monitored via a camera and optics
- Reliable operation since 2004
- Important part of the safety case and determining target lifetime
STIP Irradiation Series

- Five campaigns, thousands of samples
- SINQ target rods replaced by materials samples
Typical STIP samples

130 mm length
10.8 mm diameter
Spallation Neutron Source (ESS, J-PARC)

• Three spallation sources designed in the same timeframe
 – ESS was first, but not funded
 – SNS was based largely on the ESS concept, then advanced
 – J-PARC was ~18 months after SNS

• SNS is nominally 1-GeV, 1.4 MW
 – PUP to 1.3 GeV, 1.8 MW in 2016

• Contributions:
 – Liquid metal target development
 – Solid rotating target development
 – Beam on target imaging
 – PIE data
The SNS target is mercury circulating inside a stainless steel vessel at 24 liters/second

- System is capable of 1.4 MW beam power on target
- Target module must be replaced periodically due to embrittlement of the steel
- Beam induced cavitation damage might limit target module life more severely than radiation damage at high beam power
Mercury Targets - SNS and JSNS

SNS Parameters

316L mercury vessel and water shroud
1 MW design
200 mm x 70 mm beam spot
0.125 A/m² peak current density @ 1 MW
24 l/s mercury flow
SNS Target Development - typical component development

Mercury Thermal Hydraulic Loop (MTHL)

Water Thermal Hydraulic Loop (WTHL)

Target Test Facility (TTF)
SNS Mercury System Layout

All major components required unique designs:
- Drain paths for leaks to collection tank
- Remote handling
- Mercury seals

Hg Detector is strapped on pipe here

Managed by UT-Battelle for the U.S. Department of Energy
In-beam testing at WNR

• Since 2001, 4 in-beam damage test campaigns have been conducted at the WNR test investigating:
 - Vessel materials & hardening treatments
 - Beam intensity
 - Pulse numbers (1000 maximum)
 - Target geometry & cooling channels
 - Mercury flow
 - Small gas bubble mitigation
 - Gas wall mitigation
 - Lead bismuth
Next WNR Hg target experiment is planned for 2011

• This will investigate small gas bubble mitigation with improved bubblers
• Flowing mercury system required
• Will be done in close collaboration with JPARC team

Pump system

Bubblers & damage test plates
Solid rotating target development

- Designed for a 1.3 GeV, 3 MW proton beam
- Tungsten target with steel support
 - 1.2 m diameter
- Mockup built and tested for over 1,000 hours of operation
 - Lifetime >5 years
SNS target imaging system

- Based on flame sprayed coatings
- Essentially beam phosphors sprayed onto the target vessel
- Tests at WNR gave reasonable feedback for Chromia doped Alumina
SNS target imaging system (2)

• Imaging system was successful
• Light intensity decreases as a function of time
• Lasts as long as the target, but better understanding is desired
Original target module was replaced in July 2009 because of radiation damage

- Exceeded dpa goal of 5 dpa (reached ~ 8 dpa), but we still do not know how long the target will last at high power

- Exterior appearance is as new

- Boroscope examination completed
 - Camera light died in ~40 seconds; surface dark and textured (coated with Hg?)

- Samples cut from target nose November 5th
• Target after sampling
• Right of center shows slightly higher peaking than left on imaging system
PIE of the first target vessel

• Contract with B&W to clean and test the first target vessel
• Samples are ~10 rem/hr at 1 foot
• Inner target vessel sample is badly pitted due to cavitation damage erosion
• Where is the vessel material going?
EURISOL 4 MW Mercury target*

Off-line test in Hg loop at Institute of Physics University of Latvia (IPUL)
Mats Lindroos

*Cyril. Kharoua@esss.se / Workshop on Applications of High Intensity Proton Accelerators
October 19-21, 2009 Fermi
National Accelerator Laboratory, Batavia, IL, USA
Target Window Design

• The design of the target window for high power densities on the order of 1 MW/liter will be very challenging
 – SNS @ 2 MW with .25 A/m² and 1 GeV had peak heating of ~ .8 MW/liter
 – 316 LN window needed to be ~ 1.5 mm to limit thermal stress

• EURISOL found their window design margins less than desired

• Windowless solutions in principal would allow higher power densities
 – MYRRHA has investigated for ~ 10 years and considers it to be promising
 – EURISOL experimented with transverse flow and obtained stable flows without beam
 – Argonne National Laboratory experiments with lithium films under electron beam heating were promising for high power densities
RACE Project was initiated at Idaho State University in July 2003

- Examine coupling of accelerators and targets to subcritical reactor systems for developing transmutation technology
- Use inexpensive, compact, transportable electron linear accelerators (linacs)
 - 20-25 MeV
 - heavy targets (e.g. lead, tungsten, or uranium)
 - bremsstrahlung photons generate neutrons
 - \(\sim 10^{12} \text{ n/s/kWe of 25 MeV electrons} \)

RACE slides from project director Denis Beller
Initial RACE Project Plans

• **Phase I (ISU)** ’03-'04
 – Purpose: develop instrumentation and experience for Phase II

• **Phase II (UT-Austin)** ’05
 – TRIGA coupled ADS

• **Phase III (Texas A&M)** ’06
 – Possibly with used core in a purpose-built configuration
 – Cancelled
RACE Progress

• ISU RACE
 – 2003-2005 design, NRC licensing, and low multiplication testing
 – First full-core loading Dec ’05
 – ADS tests Dec ’05 through Oct. ’06

• Texas RACE
 – Initial experiments at UT-Austin in ’05
 – Longer campaign Jan-Mar ’06
 – TRIGA Returned to normal critical operations Mar 31, ’06
 – Several papers in AccApp’07
ISU RACE
subcritical assembly and accelerator
ISU-IAC Subcritical Assembly

- 150 U-Al fuel plates, 0.08” x 3” x 26”, Al-clad U-Al, 20% enriched,
- 3 horizontal rows, 6 mm spacing
- Accelerator target in center
- RG graphite reflector (8-12”)
- $k_{\text{eff}} \sim 0.93$ to 0.94 (per ideal MCNPX)
 \Rightarrow Multiplication about 10
- Peak instantaneous flux:
 $\sim 10^{13} - 10^{14}$ n/cm2/s in the fuel
RACE fuel trays (without fuel) and target inside the graphite reflector
ISU-IAC RACE target

- **W-Cu; 2 3/4” dia. X 3.5” long**
- **MCNPX: \(\sim 10^{12}\) neutrons/s/kWe**
- **Also a prompt, strong high-energy gamma ray signal**
The University of Texas at Austin TRIGA Mark II Research Reactor

- BP #3
- BP #2
- BP #4
- BP #5
- Core
- Reflector (Graphite)
- Pool (H₂O)
- Biological Shield (Concrete)
RACE Accomplishments

• Licensed, constructed, and conducted ADS experiments

• Five ADS Experiments Workshops (3 were international)

• RACE-ECATS collaboration
 – Target design
 – T-H feedback evaluation

• Education of students at ISU, UT-Austin, U Mich., Texas A&M, and UNLV
Neutronic Performance of Lead and Tungsten Targets

(Stopping-length targets bombarded on axis by 1-GeV protons)

55-cm-long Natural Lead

30-cm-long Natural Tungsten
Tungsten Target Performance Relative to Lead

(Stopping-length targets bombarded on axis by 1-GeV protons)
Basic Target Concepts

- SOLID TARGET
- SPLIT TARGET
- SPLIT, RADIAL COMPOSITE TARGET
- SPLIT-COMPOSITE TARGET
Neutronic Performance of a Split Target and a Split, Radially-Composite Target

(50-cm-dia, stopping-length targets bombarded on axis by 1-GeV protons)
Summary

• Discussed a few of the accelerator neutron sources and what we could learn from them
 – 3 or 4-MW targets appear to be straightforward
 • Both liquid (long pulse or CW) and solid rotating
 – Radiation damage data exists from LANL and PSI
 • AFCI handbook and papers
 • Watch for additional results
 – Code verification and validation experiments have been completed
 • Expensive – only do what needs to be done
 – Target imaging systems have been designed and tested
 – Po handling experience exists
 • Learn from or collaboration?
Summary (cont.)

• Small coupling experiments were successful in the past
 – Good for the university/students, and good for gaining experience
 – What could be done in this mode now?

• Detailed source design could lead to a target design that is easier to engineer for a demonstration experiment
 – Has it been considered?