Piano * Tuning For Physicists & Engineers using your

Laptop, Microphone, and Hammer

by

Bruce Vogelaar

313 Robeson Hall Virginia Tech vogelaar@vt.edu

at

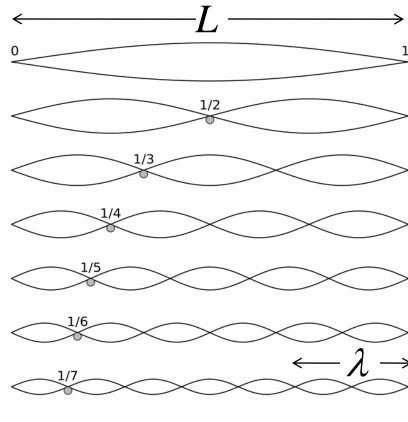
3:00 pm Room 130 Hahn North March 17, 2012

What our \$50 piano sounded like when delivered.

So far: cleaned, fixed four keys, raised pitch a halfstep to set A4 at 440 Hz, and did a rough tuning...

Bravely put your 'VT physics education' to work on that ancient piano!

Tune: to what? why? how? Regulate: what? Fix keys: how?



frequency of string = frequency of sound

(λ of string $\neq \lambda$ of sound)

A piano string is fixed at its two ends, and can vibrate in several harmonic modes.

$$L=n\frac{\lambda}{2};$$

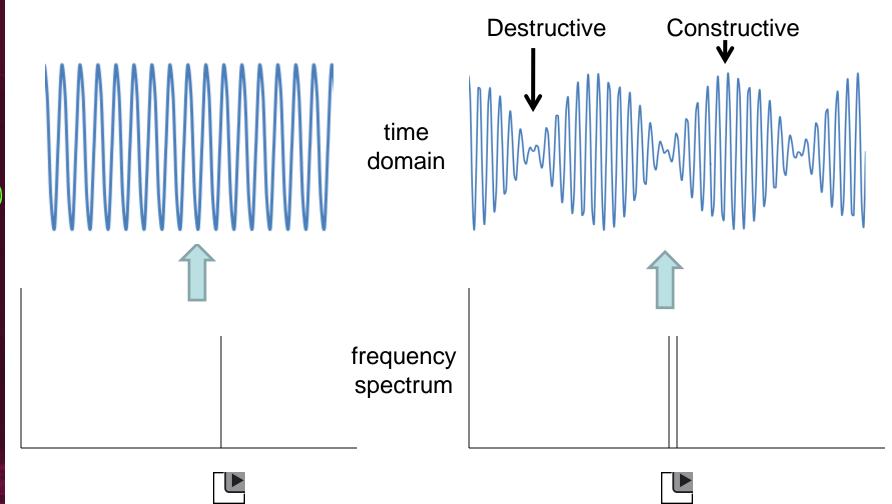
$$f_n = \frac{v}{\lambda} = n\frac{v}{2L} = nf_0$$

$$\omega_n = 2\pi f_n$$

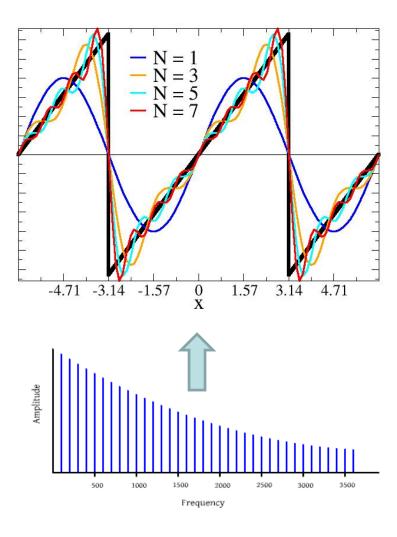
[v = speed of wave on string]

"Pluck" center → mostly 'fundamental'
"Pluck" near edge → many higher 'harmonics'

What you hear is the sum (transferred into air pressure waves). $P(t) = a_1 \sin(\omega_1 t) + a_2 \sin(\omega_2 t) + a_3 \sin(\omega_3 t) + \dots$



Piano Tuning

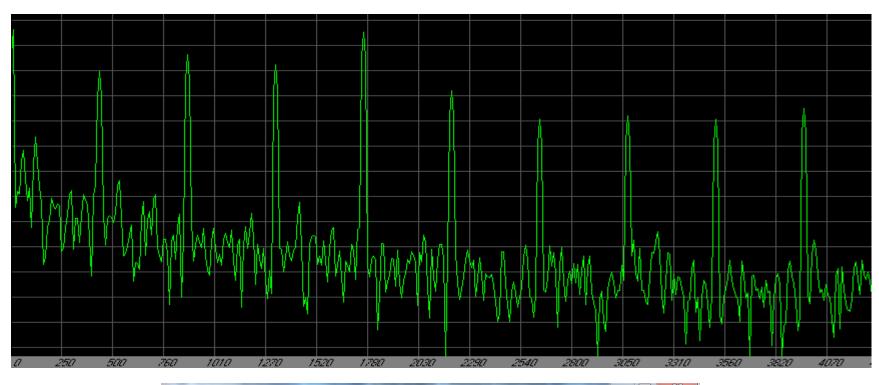


frequency content determines 'timbre'

Given only the 'sum', what were the components?

Fourier Analysis

"How much of the sum comes from individual components"



74 Synthesizer							
LOAD: A4(ref) 440 · Note A · Octave 4 · Into: L R R(L) · 1.5xR							
Left	Со	ntrol	Right				
<< < 440.0 > >>	ST/	ART	<< < 440.0 > >>				
Frequency	Pause	Resume	Frequency				
123456789	left	right	1 2 3 4 5 6 7 8 9				
Harmonics	both (avg)		Harmonics				
< 1.00 >	ste	reo	< 1.00 >				
Damping	Down	Up	Damping				
< 0.0000 >	Volume diff: 0.0 cents		< 0.0000 >				
Inharmonicity	E>	KIT	Inharmonicity				

13 slides on how this is done (just can't resist)

Consider a class grade distribution:

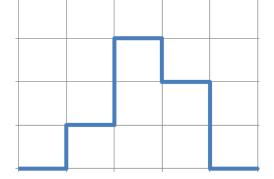
P(x) is the number of students versus grade

f(x) is a 1x1 block at a certain grade

Summing the product of P(x)f(x) gives the number of students with that grade

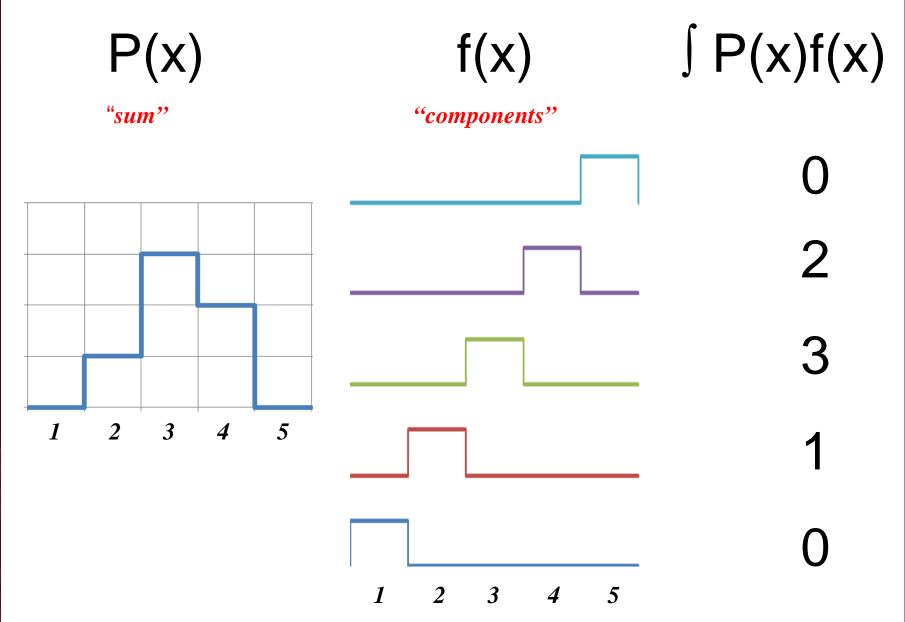
P(x):

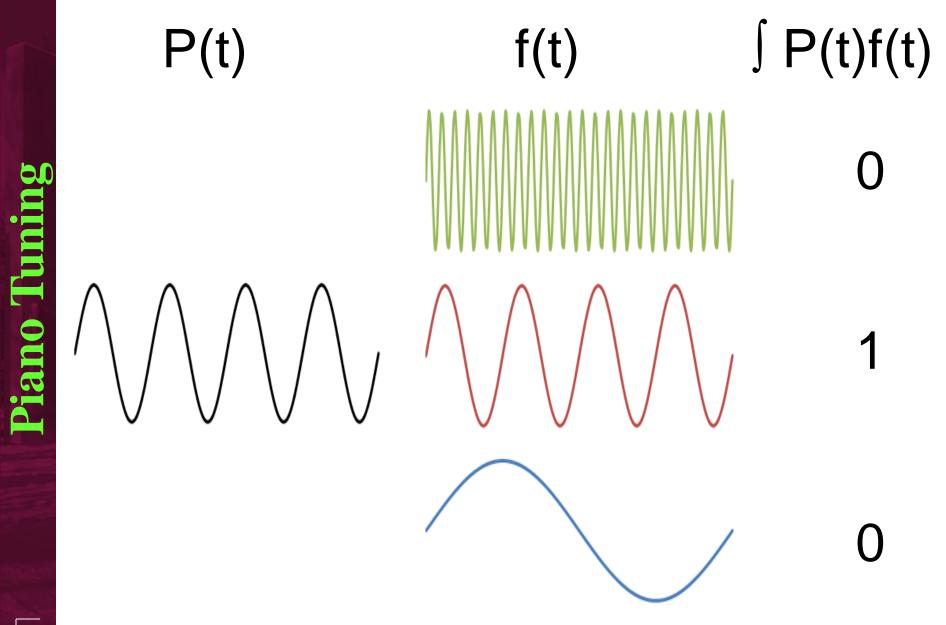
f(x):



Tuning

Piano





An arbitrary waveform can be described by a sum of cosine and sine functions:

$$P(t) = \sum_{n=0}^{\infty} \left[a_n \cos(\omega_n t) + b_n \sin(\omega_n t) \right]$$

piano 'note' is a sum of harmonics

want graph of amplitude-vs-frequency $\sqrt{a_n^2 + b_n^2}$ $\omega = 2\pi f$

finding a_m

 $\int_{cycle} P(t)\cos(\omega_m t) dt = \int_{cycle} \sum_{n=0}^{\infty} [a_n \cos(\omega_n t) + b_n \sin(\omega_n t)] \cos(\omega_m t) dt$ $\int_{cycle} P(t) \cos(\omega_m t) dt = \pi a_m$

all terms on right integrate to zero except mth !

 $\int_{cycle} \cos(\omega_{\rm n} t) \cos(\omega_{\rm m} t) dt = \pi \delta_{nm} \quad (0; \text{ or } \pi \text{ if } m = n)$

$$\int_{cycle} \sin(\omega_{\rm n}t)\cos(\omega_{\rm m}t)dt = 0$$

find b_m using $sin(\omega_m t)$

typical extraction of properties from a distribution

Weighted average

 $f_{avg} = \sum Pf$ $f_{avg} = \int Pf$

Typical Application (assume P and ψ are normalized)

class grade average center of mass dipole moments

(same as above, but for continuous distributions) e.g.: Maxwell Boltzmann velocity distributions

$$a_n = \int_{-\pi}^{\pi} P(x) \frac{1}{\pi} \cos(nx) dx$$

Fourier component of $P(x) = \sum_{0}^{\infty} [a_n \cos(nx) + b_n \sin(nx)]$

commuting quantum mechanical variables

 $f_{avg} = \left< \psi \left| f \right| \psi \right>$

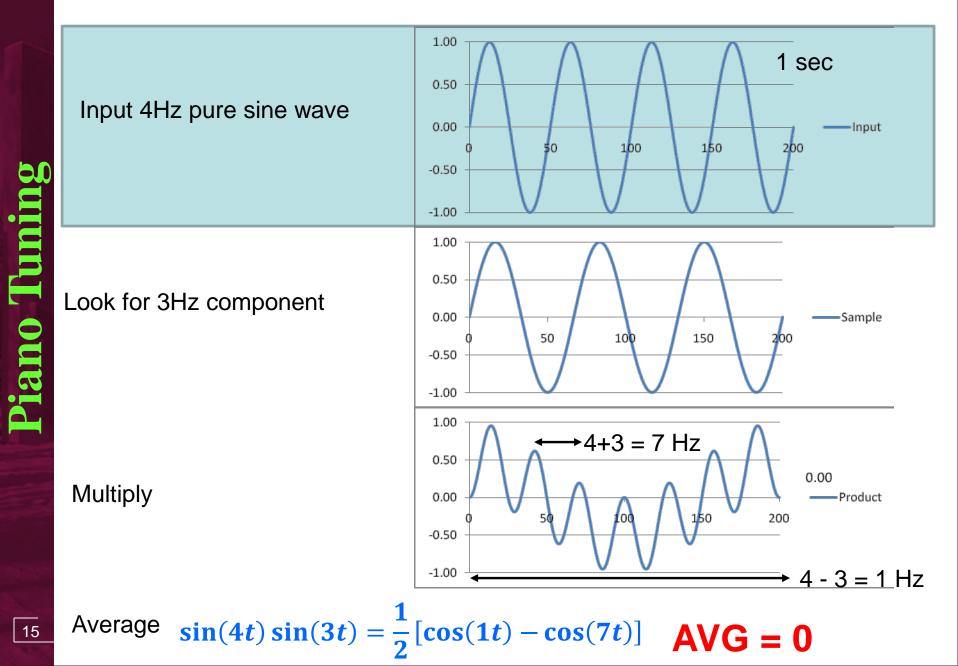
 $f_{avg} = \int f |\psi|^2$

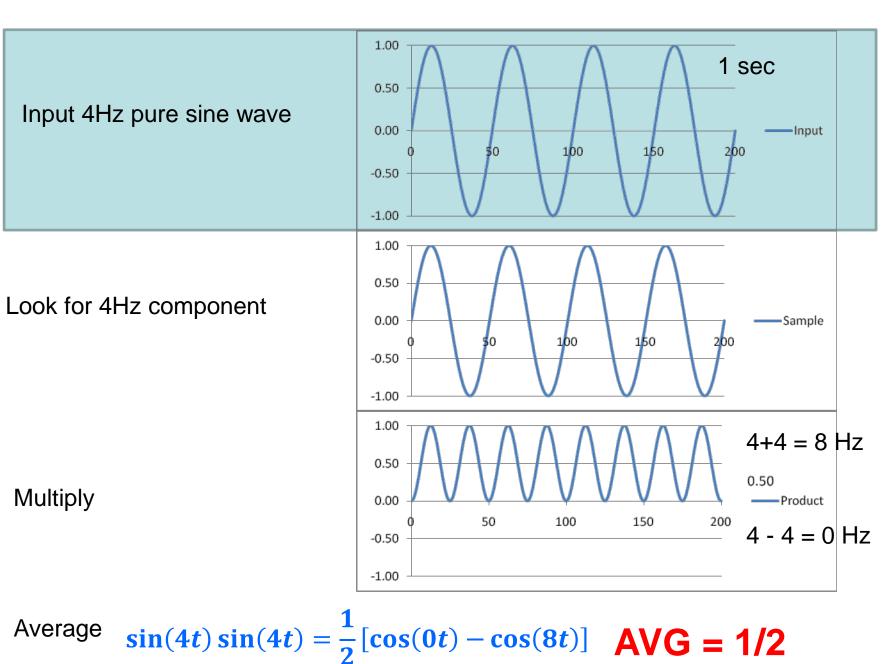
non-commuting quantum mechanical variables

rate $\propto \left| \left\langle \Psi_f \left| f \right| \Psi_i \right\rangle \right|^2$

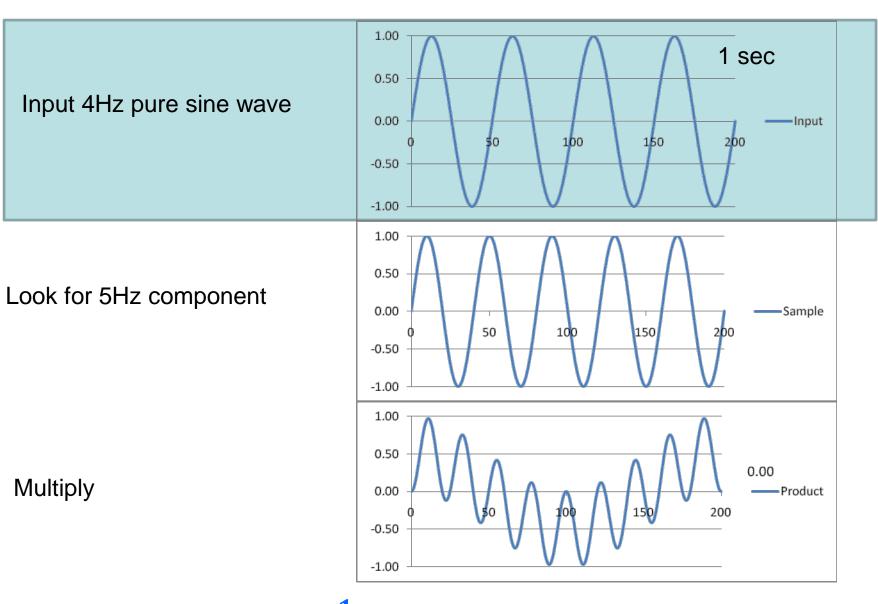
Fermi's golden rule for transitions between two states.

200 Samples, every 1/200 second, giving $f_0 = 1$ Hz





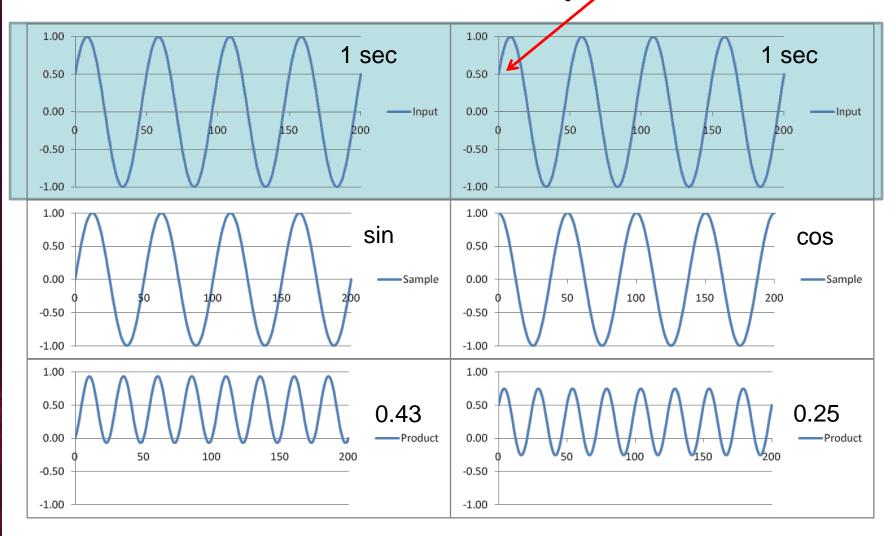
16



Average $\sin(4t)\sin(5t) = \frac{1}{2}[\cos(1t) - \cos(9t)]$ **AVG = 0**

Great, picked out the 4 Hz input. But what if the input phase is different?

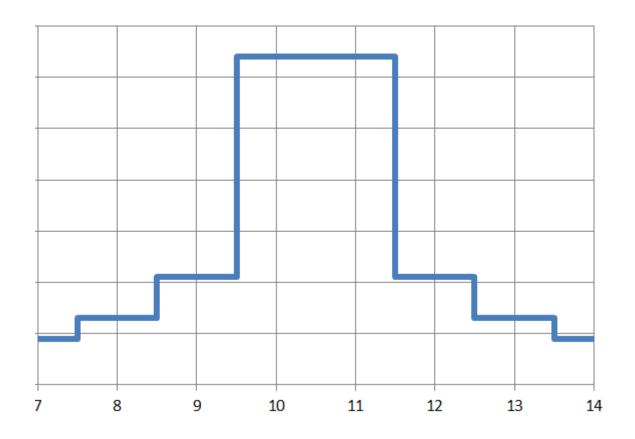
Use COS as well. For example: 4Hz, $\phi_0 = 30^\circ$; sample 4 Hz



$(0.43^2 + 0.25^2)^{1/2} = 1/2$ Right On!

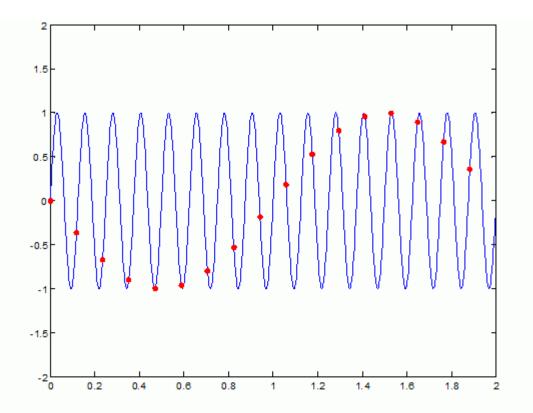
18

Signal phase does not matter. What about input at 10.5 Hz?



Finite Resolution

Remember, we only had 200 samples, so there is a limit to how high a frequency we can extract. Consider 188 Hz, sampled every 1/200 seconds:



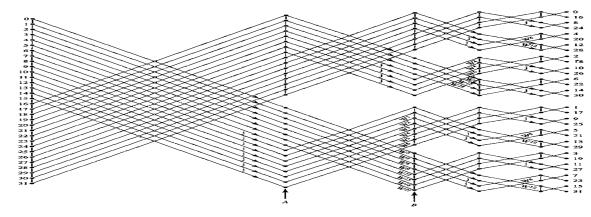
Nyquist Limit

Sample > 2x frequency of interest;

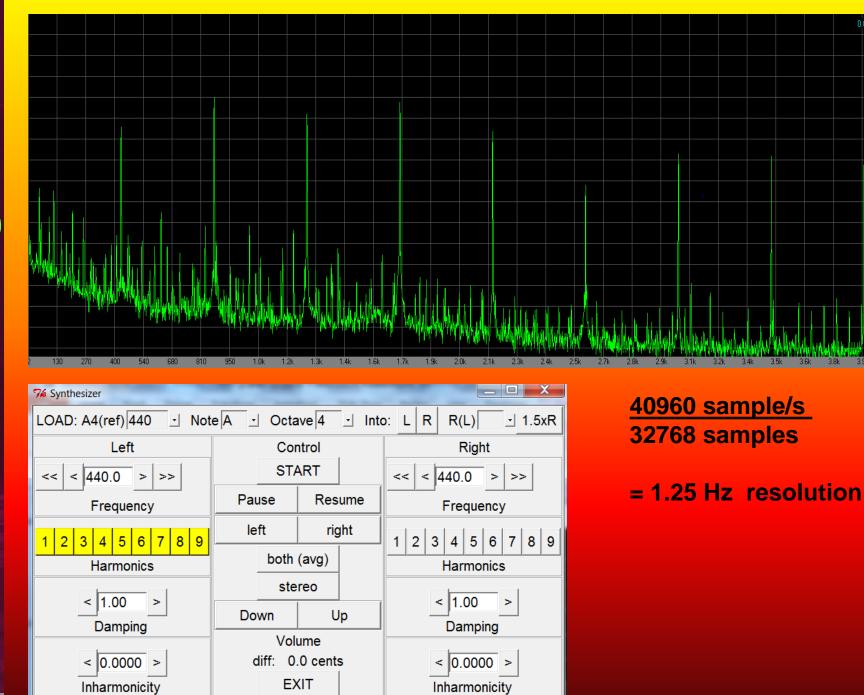
lots of multiplication & summing \rightarrow slow...

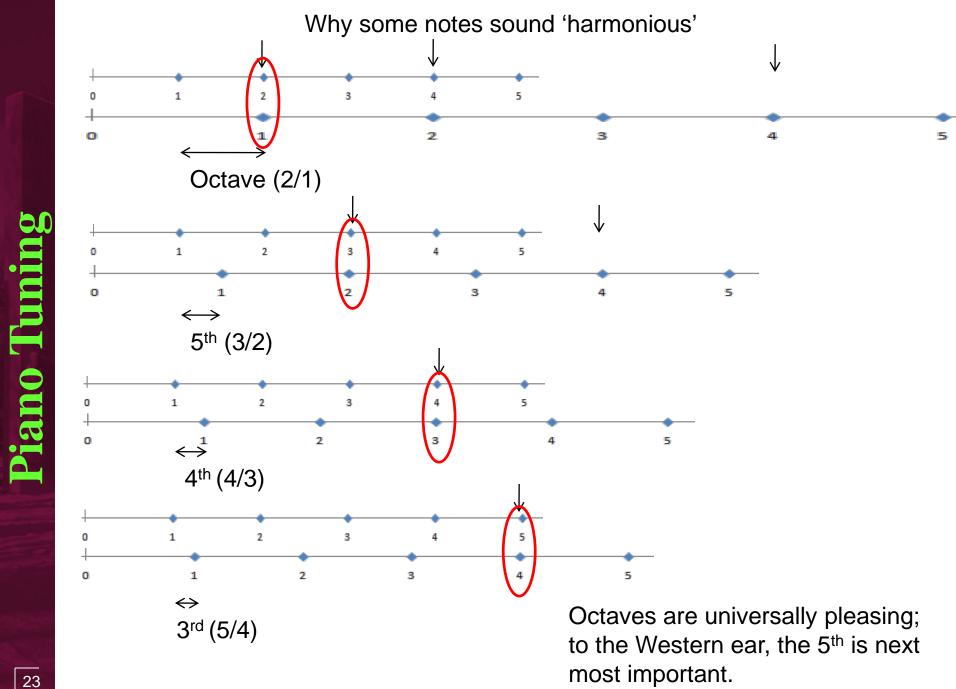
Fast Fourier Transforms

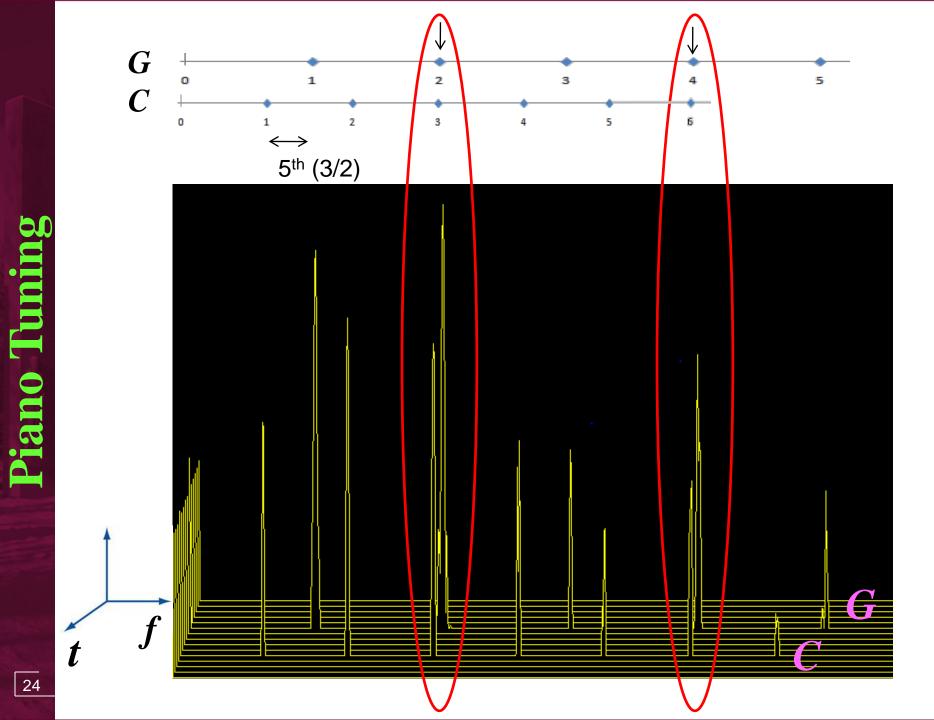
- uses Euler's $e^{i\theta} = \cos(\theta) + i \sin(\theta)$
- several very clever features
- \rightarrow 1000's of times faster



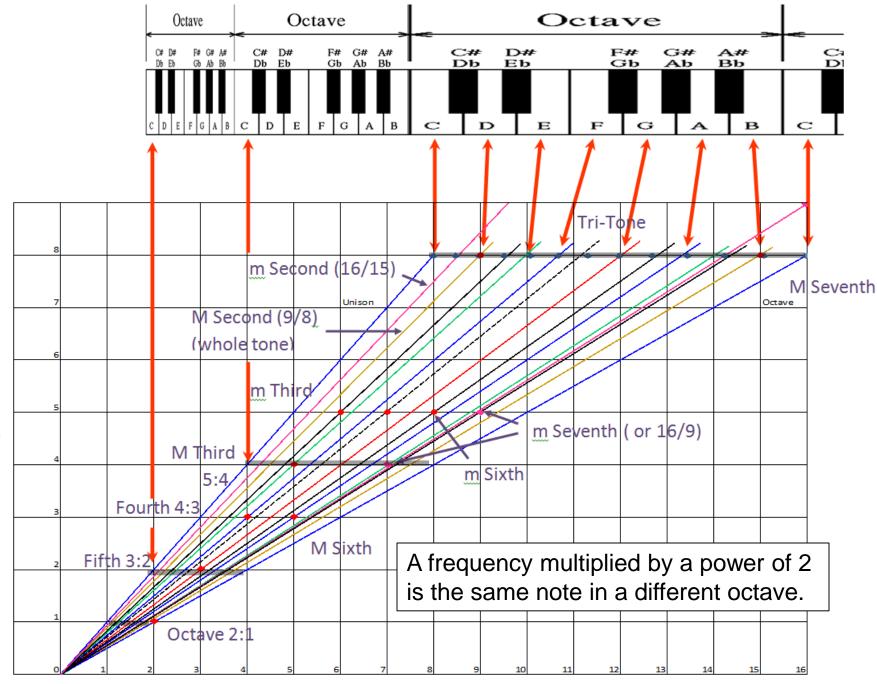
Free FFT Spectrum Analyzer: http://www.sillanumsoft.org/download.htm "Visual Analyzer"







Multiple of higher fundamental frequency.



Multiple of lower fundamental frequency.

"Circle of 5th s"

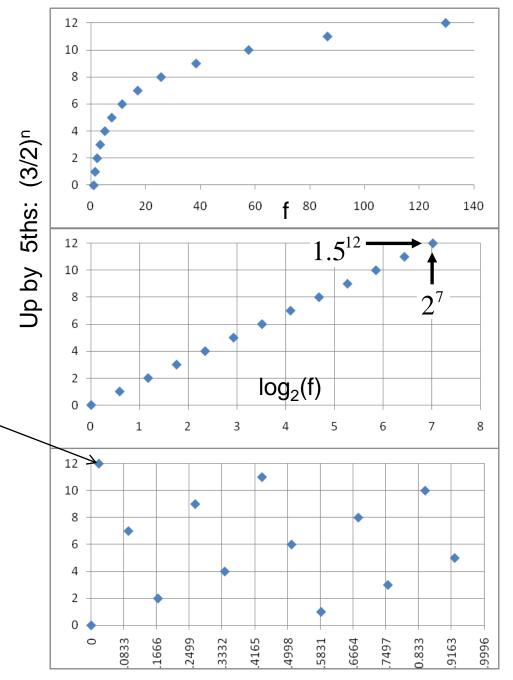
Going up by 5ths 12 times brings you *very* near the same note (but 7 octaves up)

(this suggests perhaps 12 notes per octave)

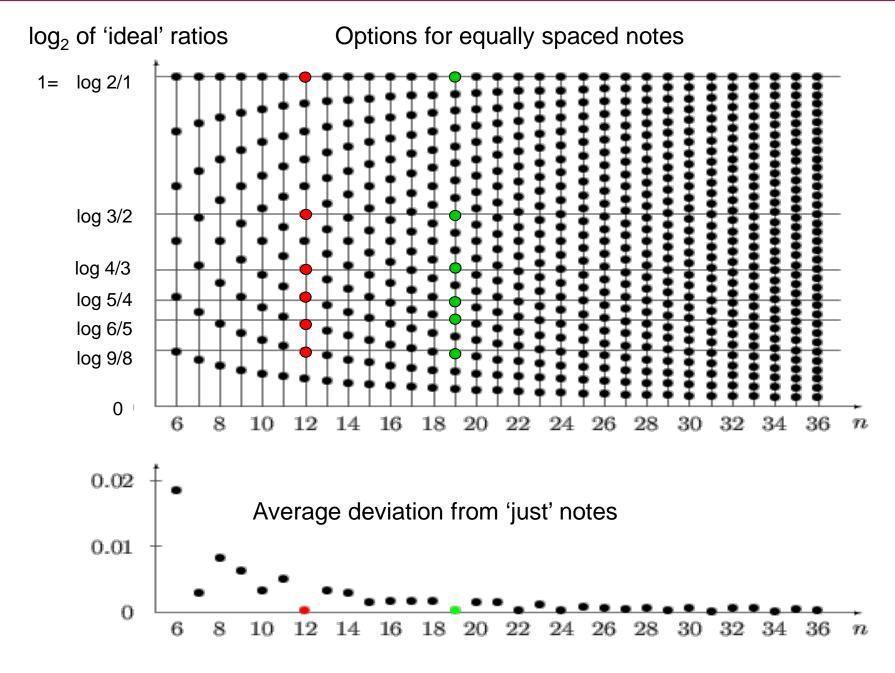
Wolf " fifth

We define the number of 'cents' between two notes as $1200 * \log_2(f_2/f_1)$

Octave = 1200 cents "Wolf " fifth off by 23 cents.



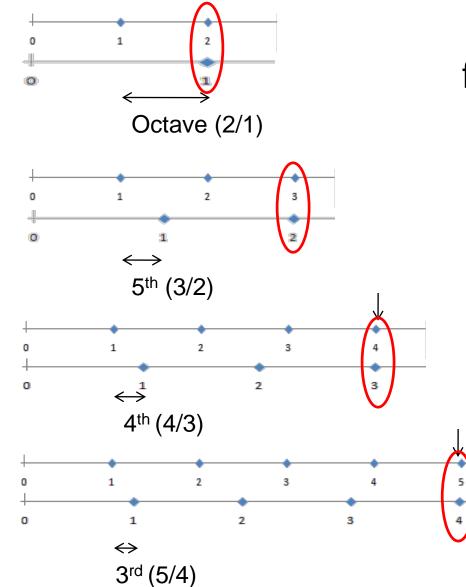
log₂(f) shifted into same octave



We've chosen 12 EQUAL tempered steps; could have been 19 just as well...

Interval	Equal Temperament Frequency Ratio			Difference	Harmonic Seri Frequency Rat		
Octave	$(\sqrt[12]{2})^{12}$	=	2.0000	0.0000	2.0000	=	2/1
Major Seventh	$(\sqrt[12]{2})^{11}$	=	1.8877	0.0127	1.8750	=	15/8
Minor Seventh	$(\sqrt[12]{2})^{10}$	=	1.7818	0.0318	1.7500	=	7/4
Major Sixth	$(\sqrt[12]{2})^9$	=	1.6818	0.0151	1.6667	=	5/3
Minor Sixth	$(\sqrt[12]{2})^{8}$	=	1.5874	-0.0126	1.6000	=	8/5
Perfect Fifth	$(\sqrt[12]{2})^7$	=	1.4983	-0.0017	1.5000	=	3/2
Tritone	$(\sqrt[12]{2})^{6}$	=	1.4142	0.0000	1.4142	=	$\sqrt{2}/1$
Perfect Fourth	$(\sqrt[12]{2})^5$	=	1.3348	0.0015	1.3333	=	4/3
Major Third	$(\sqrt[12]{2})^4$	=	1.2599	0.0099	1.2500	=	5/4
Minor Third	$(\sqrt[12]{2})^3$	=	1.1892	-0.0108	1.2000	=	6/5
Major Second	$\left(\sqrt[12]{2}\right)^2$	=	1.1225	-0.0025	1.1250	=	9/8
Minor Second	$\left(\sqrt[12]{2}\right)^{1}$	=	1.0595	-0.0072	1.0667	=	16/15
Unison	$\left(\sqrt[12]{2}\right)^{0}$	=	1.0000	0.0000	1.0000	=	1/1

What an 'aural' tuner does...



for *equal* temperament:

tune so that desired harmonics are at the same frequency;

then, set them the required amount off by counting 'beats'.

Equal temperament beatings (all figures in Hz)												
261.626	277.183	293.665	311.127	329.628	349.228	369.994	391.99 5	415.305	440.000	466.164	493.883	523.251
0.00000			14.1185	20.7648	1.18243		1.77165	16.4810	23.7444			С
		13.3261	19.5994	1.11607		1.67221	15.5560	22.4117			В	
	12.5781	18.4993	1.05343		1.57836	14.6829	21.1538			Bb		
11.8722	17.4610	.994304		1.48977	13.8588	19.9665			Α			
16 4810	.938498		1.40616	13.0810	18.8459			Αb				
.885824		1.32724	12.3468	17.7882			G				Funda	mental
	1.25274	11 6539	16.7898			F♯					Oct	ave
1.18243	10.9998	15.8475			F						Major	sixth
10.3824	14.9580										Minor	sixth
14.1185			Εb	Fron	n C, s	set G	abov	e it s	uch t	hat	Perfec	t fifth
		D			ctave						Perfect	fourth
	C♯										Major	third
С				yo	u hea	ar a c	1.89 F	1Z DE	eating		Minor	r third

Interval	Approximate ratio	Beating above the lower pitch	Tempering	0
Unison	1:1	Unison	Exact	
Octave	2:1	Octave	Exact	
Major sixth	5:3	Two octaves and major third	Wide	I was hopeless,
Minor sixth	8:5	Three octaves	Narrow	and even wrote a
Perfect fifth	3:2	Octave and fifth	Slightly narrow	
Perfect fourth	4:3	Two octaves	Slightly wide	synthesizer to try and train myself
Major third	5:4	Two octaves and major third	Wide	and training senting
Minor third	6 :5	Two octaves and fifth	Narrow	
				but I still couldn't

'hear' it...

Piano Tuning

These beat frequencies are for the central octave.

Is it hopeless?

not with a little help from math and a laptop...

we (non-musicians) can use a spectrum analyzer...

With a (free) "Fourier" spectrum analyzer we can set the pitches exactly!

True Equal Temperament Frequencies

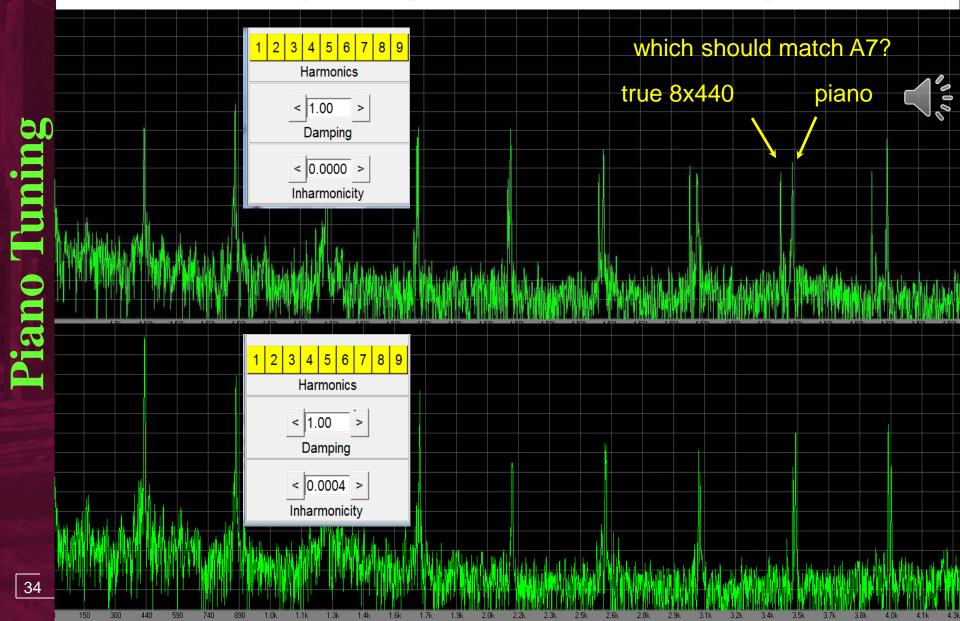
•	0	1	2	3	4	5	6	7	8
С		32.70	65.41	130.81	261.63	523.25	1046.50	2093.00	4186.01
C#		34.65	69.30	138.59	277.18	554.37	1108.73	2217.46	
D		36.71	73.42	146.83	293.66	587.33	1174.66	2349.32	
D#		38.89	77.78	155.56	311.13	622.25	1244.51	2489.02	
E		41.20	82.41	164.81	329.63	659.26	1318.51	2637.02	
F		43.65	87.31	174.61	349.23	698.46	1396.91	2793.83	
F#		46.25	92.50	185.00	369.99	739.99	1479.98	2959.96	
G		49.00	98.00	196.00	392.00	783.99	1567.98	3135.96	
G#		51.91	103.83	207.65	415.30	830.61	1661.22	3322.44	
Α	27.50	55.00	110.00	220.00	<mark>440.00</mark>	880.00	1760.00	3520.00	
A#	29.14	58.27	116.54	233.08	466.16	932.33	1864.66	3729.31	
В	30.87	61.74	123.47	246.94	493.88	987.77	1975.53	3951.07	

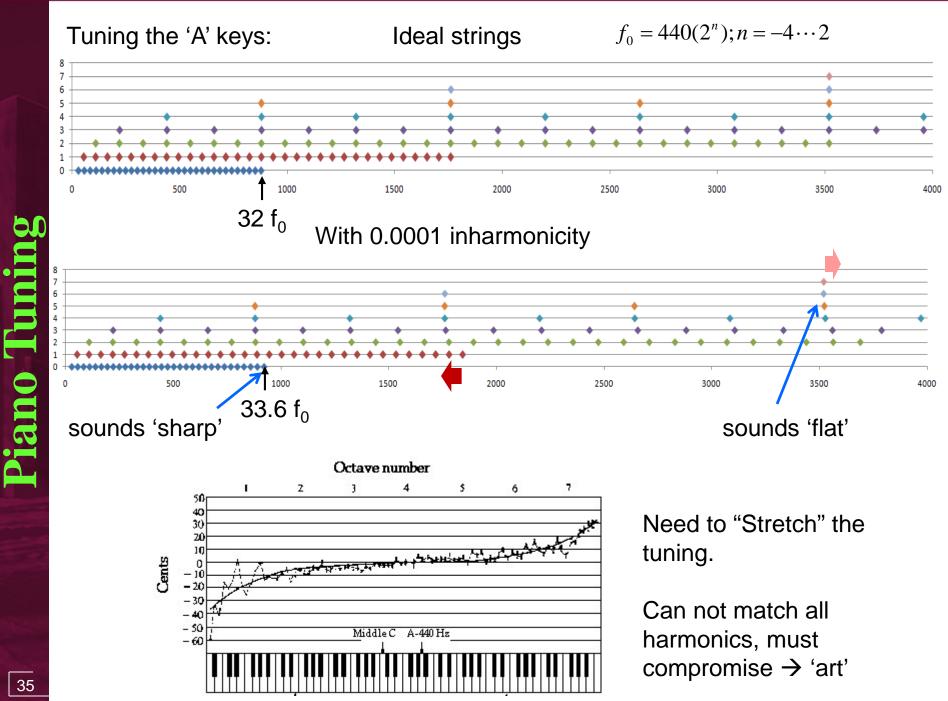
But first – a critical note about 'real' strings (where 'art' can't be avoided)

• strings have 'stiffness'

- bass strings are wound to reduce this, but not all the way to their ends
- treble strings are very short and 'stiff'
- thus harmonics are not true multiples of fundamentals
 - $-f_n$ is increased by a factor of $\sqrt{1+\beta n^2}$
- concert grands have less inharmonicity because they have longer strings

A4 (440) inharmonicity





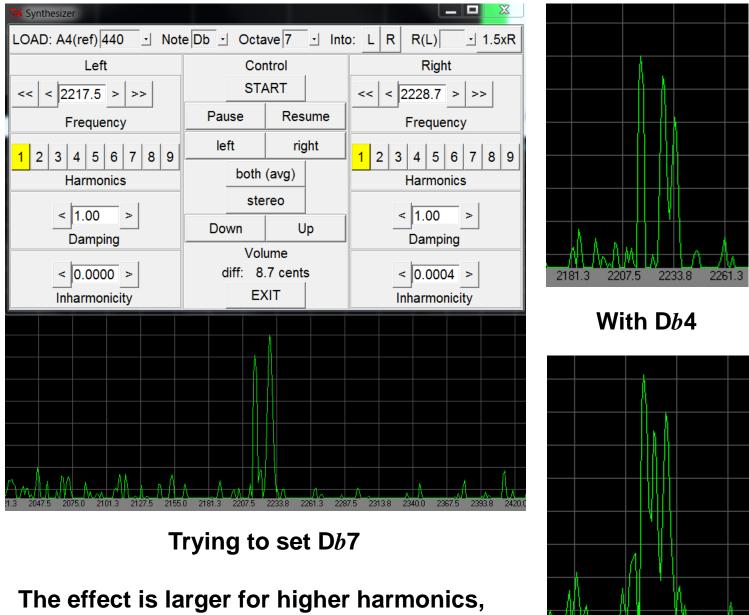
(how I've done it)

octaves 3-5: no stretch (laziness on my part)

octaves 0-2: tune harmonics to notes in octave 3

octaves 6-7: set 'R' inharmonicity to ~0.0003 load note into L and use R(L) 'Stretched'

74 Synthesizer									
LOAD: A4(ref) 440 · Note A · Octave 6 · Into: L R R(L) · 1.5xR									
Left	Сог	ntrol	Rig m2 16/15						
<< < 1760.0 > >>	ST	ART	<< < 1764.2 M2_9/8						
Frequency	Pause	Resume	m3_6/5 Frequ M3_5/4						
	left	right	P4_4/3						
1 2 3 4 5 6 7 8 9 Harmonics	both	(avg)	P5_3/2						
Harmonics	ste	reo	Harmem6_8/5						
< 1.00 >	Down	Up	< 1.00 m7_7/4						
Damping		ume	Damt M7_15/8 Octave_2						
< 0.0000 >		1 cents	< 0.0003 >						
Inharmonicity	Ε>	кіт	Inharmonicity						



The effect is larger for higher harmonics, and so you simply can't match everything at the same time.

With Db5

2233.8

2261.3

2207.5

2181.3

37

but some keys don't work...

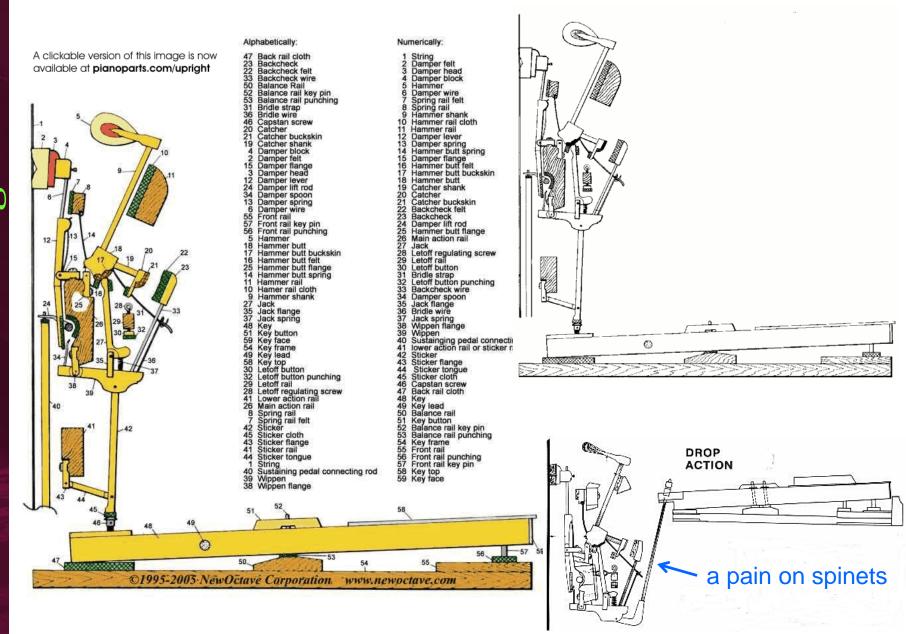
pianos were designed to come apart

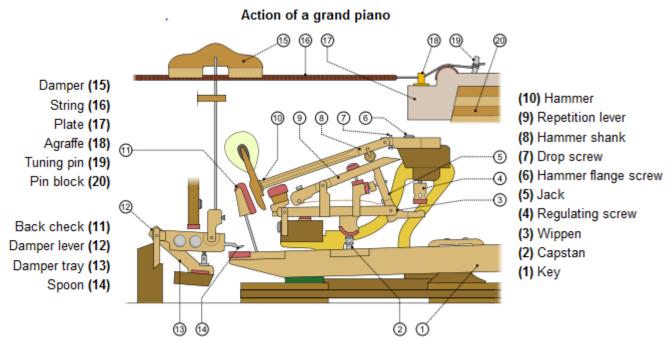
(if you break a string tuning it, you'll need to remove the 'action' anyway)

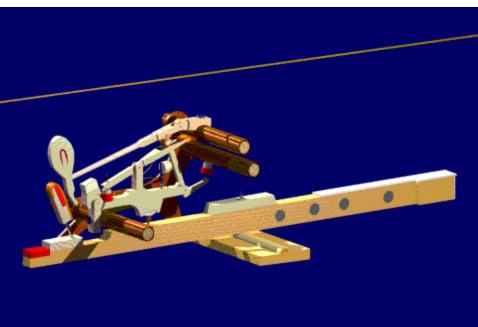
(remember to number the keys before removing them and mark which keys hit which strings)

"Regulation"

Fixing keys, and making mechanical adjustments so they work optimally, and 'feel' uniform.







"Voicing" the hammers

NOT for the novice (you can easily ruin a set of hammers)

Piano Tuning

Let's now do it for real...

pin turning unisons ('true' or not?) tune using FFT put it back together