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For Physicists & Engineers
using your

PianoTuning

Laptop, Microphone, and Hammer

Bruce Vogelaar
313 Robeson Hall

Virginia Tech
vogelaar@vt.edu

at

3:00 pm Room 130 Hahn North
March 17, 2012
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What our $50 piano sounded like when delivered.

So far: cleaned, fixed four keys, raised pitch a half-
step to set A4 at 440 Hz, and did a rough tuning…
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Bravely put your ‘VT physics 
education’ to work on that 

ancient piano!

Tune: to what? why? how?
Regulate: what?
Fix keys: how?
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A piano string is fixed 
at its two ends, and 
can vibrate in several 
harmonic modes.
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frequency of string = frequency of sound

(λ of string ≠ λ of sound)

“Pluck” center  mostly ‘fundamental’
“Pluck” near edge  many higher ‘harmonics’

What you hear is the sum (transferred into air pressure waves).
...)sin()sin()sin()( 332211 +++= tatatatP ωωω

L

λ

[v = speed of wave on string]
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time
domain

frequency
spectrum

Destructive         Constructive


4.153477




4.571438
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frequency content determines ‘timbre’


4.571438
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Given only the ‘sum’,
what were the components?

Fourier Analysis
“How much of the sum comes 
from individual components”
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13 slides on how this is done  
(just can’t resist)

P(x):

f(x):

P(x)f(x):

Consider a class grade
distribution:

P(x) is the number of
students versus grade

f(x) is a 1x1 block
at a certain grade

Summing the product of
P(x)f(x) gives the number of
students with that grade
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P(x)                 f(x)          ∫ P(x)f(x) 

0
2

3

1

0

1        2       3       4        5

1        2       3        4        5

“sum”                                         “components”
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P(t)                  f(t)  ∫ P(t)f(t) 

0

1

0
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An arbitrary waveform can be 
described by a sum
of cosine and sine
functions:

piano ‘note’ is a sum of harmonics

want graph of amplitude-vs-frequency
𝒂𝒂𝒏𝒏𝟐𝟐 + 𝒃𝒃𝒏𝒏𝟐𝟐 ω=2πf
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all terms on right integrate to zero except mth !

�
𝒄𝒄𝒚𝒚𝒄𝒄𝒚𝒚𝒚𝒚

𝑷𝑷 𝒕𝒕 𝐜𝐜𝐜𝐜𝐜𝐜(𝝎𝝎𝒎𝒎𝒕𝒕)𝒅𝒅𝒕𝒕 = �
𝒄𝒄𝒚𝒚𝒄𝒄𝒚𝒚𝒚𝒚

�
𝒏𝒏=𝟎𝟎

∞

𝒂𝒂𝒏𝒏 𝐜𝐜𝐜𝐜𝐜𝐜 𝝎𝝎𝒏𝒏𝒕𝒕 + 𝒃𝒃𝒏𝒏 𝐜𝐜𝐬𝐬𝐬𝐬 𝝎𝝎𝒏𝒏𝒕𝒕 𝐜𝐜𝐜𝐜𝐜𝐜(𝝎𝝎𝒎𝒎𝒕𝒕)𝒅𝒅𝒕𝒕

find bm using sin(ωmt)
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Weighted average  
 

Typical Application     (assume P and ψ are normalized) 
 

∑= Pffavg  
class grade average 
center of mass 
dipole moments 

fPfavg ∫=  (same as above, but for continuous distributions) 
e.g.: Maxwell Boltzmann velocity distributions 

dxnxxPan )cos( )( 1
π

π

π
∫
−

=
 

Fourier component of [ ]∑
∞

+=
0

)sin()cos()( nxbnxaxP nn  

2
ψ∫= ffavg  commuting quantum mechanical variables 

ψψ ffavg =  non-commuting quantum mechanical variables 

2ψψ if frate∝  Fermi’s golden rule for transitions between two states. 

 

typical extraction of properties from a distribution
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Input 4Hz pure sine wave

Look for 3Hz component

1 sec

4+3 = 7 Hz

4 - 3 = 1 Hz

Multiply

Average 𝐜𝐜𝐬𝐬𝐬𝐬 𝟒𝟒𝒕𝒕 𝐜𝐜𝐬𝐬𝐬𝐬 𝟑𝟑𝒕𝒕 =
𝟏𝟏
𝟐𝟐
𝐜𝐜𝐜𝐜𝐜𝐜 𝟏𝟏𝒕𝒕 − 𝐜𝐜𝐜𝐜𝐜𝐜 𝟕𝟕𝒕𝒕

200 Samples, every 1/200 second, giving f0 = 1 Hz

AVG = 0
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Input 4Hz pure sine wave

Look for 4Hz component

AVG = 1/2

1 sec

4+4 = 8 Hz

4 - 4 = 0 Hz
Multiply

Average 𝐜𝐜𝐬𝐬𝐬𝐬 𝟒𝟒𝒕𝒕 𝐜𝐜𝐬𝐬𝐬𝐬 𝟒𝟒𝒕𝒕 =
𝟏𝟏
𝟐𝟐
𝐜𝐜𝐜𝐜𝐜𝐜 𝟎𝟎𝒕𝒕 − 𝐜𝐜𝐜𝐜𝐜𝐜 𝟖𝟖𝒕𝒕
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Input 4Hz pure sine wave

Look for 5Hz component

1 sec

Multiply

Average AVG = 0𝐜𝐜𝐬𝐬𝐬𝐬 𝟒𝟒𝒕𝒕 𝐜𝐜𝐬𝐬𝐬𝐬 𝟓𝟓𝒕𝒕 =
𝟏𝟏
𝟐𝟐
𝐜𝐜𝐜𝐜𝐜𝐜 𝟏𝟏𝒕𝒕 − 𝐜𝐜𝐜𝐜𝐜𝐜 𝟗𝟗𝒕𝒕
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Great, picked out the 4 Hz input.  But what if the input phase is different?

0.25

Use COS as well.  For example: 4Hz, φ0 = 30o; sample 4 Hz

(0.432 + 0.252)1/2 = 1/2  Right On!

1 sec 1 sec

sin cos

0.43 0.25



19

Pi
an

o 
Tu

ni
ng

Signal phase does not matter.
What about input at 10.5 Hz?

Finite Resolution
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Remember, we only had 200 samples, so there is a limit
to how high a frequency we can extract.   Consider 188 Hz,
sampled every 1/200 seconds:

Nyquist Limit Sample > 2x frequency of interest;

lots of multiplication & summing  slow…
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Fast Fourier Transforms
• uses Euler’s 𝒚𝒚𝒊𝒊𝜽𝜽 = cos 𝜽𝜽 + 𝒊𝒊 sin(𝜽𝜽)
• several very clever features
• ⇒ 1000’s of times faster

Free FFT Spectrum Analyzer:
http://www.sillanumsoft.org/download.htm

“Visual Analyzer” 

http://www.sillanumsoft.org/download.htm
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40960 sample/s 
32768 samples

= 1.25 Hz  resolution
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5th (3/2)

4th (4/3)

3rd (5/4)

Why some notes sound ‘harmonious’

Octaves are universally pleasing; 
to the Western ear, the 5th is next 
most important.

Octave (2/1)
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5th (3/2)

G
C

G
C

t f
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A frequency multiplied by a power of 2 
is the same note in a different octave.
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Going up by  5ths 
12 times brings you very
near the same note
(but 7 octaves up)

(this suggests perhaps
12 notes per octave)

f

log2(f)

log2(f) shifted into same octave

“Wolf ” fifth

We define the number of 
‘cents’ between two notes as
1200 * log2(f2/f1)

Octave = 1200 cents
“Wolf “ fifth off by 23 cents.

U
p 

by
  5

th
s:

  (
3/

2)
n

“Circle of 5th s”

72

125.1
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log 2/1

log 3/2

log 4/3

log 5/4
log 6/5
log 9/8

We’ve chosen 12 EQUAL tempered steps; could have been 19 just as well…

Average deviation from ‘just’ notes

1=

0

log2 of ‘ideal’ ratios                Options for equally spaced notes
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Typically set A4 to 440 Hz

Interval Equal Temperament 
Frequency Ratio Difference Harmonic Series 

Frequency Ratio 

Octave � √𝟐𝟐𝟏𝟏𝟐𝟐 �
𝟏𝟏𝟐𝟐

 = 2.0000 0.0000 2.0000 = 2/1 

Major Seventh � √𝟐𝟐𝟏𝟏𝟐𝟐 �
𝟏𝟏𝟏𝟏

 = 1.8877 0.0127 1.8750 = 15/8 

Minor Seventh � √𝟐𝟐𝟏𝟏𝟐𝟐 �
𝟏𝟏𝟎𝟎

 = 1.7818 0.0318 1.7500 = 7/4 

Major Sixth � √𝟐𝟐𝟏𝟏𝟐𝟐 �
𝟗𝟗

 = 1.6818 0.0151 1.6667 = 5/3 

Minor Sixth � √𝟐𝟐𝟏𝟏𝟐𝟐 �
𝟖𝟖

 = 1.5874 -0.0126 1.6000 = 8/5 

Perfect Fifth � √𝟐𝟐𝟏𝟏𝟐𝟐 �
𝟕𝟕

 = 1.4983 -0.0017 1.5000 = 3/2 

Tritone � √𝟐𝟐𝟏𝟏𝟐𝟐 �
𝟔𝟔

 = 1.4142 0.0000 1.4142 = √𝟐𝟐/𝟏𝟏 

Perfect Fourth � √𝟐𝟐𝟏𝟏𝟐𝟐 �
𝟓𝟓

 = 1.3348 0.0015 1.3333 = 4/3 

Major Third � √𝟐𝟐𝟏𝟏𝟐𝟐 �
𝟒𝟒

 = 1.2599 0.0099 1.2500 = 5/4 

Minor Third � √𝟐𝟐𝟏𝟏𝟐𝟐 �
𝟑𝟑

 = 1.1892 -0.0108 1.2000 = 6/5 

Major Second � √𝟐𝟐𝟏𝟏𝟐𝟐 �
𝟐𝟐

 = 1.1225 -0.0025 1.1250 = 9/8 

Minor Second � √𝟐𝟐𝟏𝟏𝟐𝟐 �
𝟏𝟏

 = 1.0595 -0.0072 1.0667 = 16/15 

Unison � √𝟐𝟐𝟏𝟏𝟐𝟐 �
𝟎𝟎

 = 1.0000 0.0000 1.0000 = 1/1 
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5th (3/2)

4th (4/3)

3rd (5/4)

for equal temperament:

tune so that desired 
harmonics are at the 
same frequency;

then, set them the 
required amount off 
by counting ‘beats’.

Octave (2/1)

What an ‘aural’ tuner does…
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I was hopeless,
and even wrote a
synthesizer to try
and train myself…

but I still couldn’t
‘hear’ it…

From C, set G above it such that 
an octave and a fifth above the C 

you hear a 0.89 Hz ‘beating’

These beat frequencies are for the central octave.
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Is it hopeless?

not with a little help from math 
and a laptop…

we (non-musicians) can use a 
spectrum analyzer…
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0 1 2 3 4 5 6 7 8
C 32.70 65.41 130.81 261.63 523.25 1046.50 2093.00 4186.01

C# 34.65 69.30 138.59 277.18 554.37 1108.73 2217.46
D 36.71 73.42 146.83 293.66 587.33 1174.66 2349.32

D# 38.89 77.78 155.56 311.13 622.25 1244.51 2489.02
E 41.20 82.41 164.81 329.63 659.26 1318.51 2637.02
F 43.65 87.31 174.61 349.23 698.46 1396.91 2793.83

F# 46.25 92.50 185.00 369.99 739.99 1479.98 2959.96
G 49.00 98.00 196.00 392.00 783.99 1567.98 3135.96

G# 51.91 103.83 207.65 415.30 830.61 1661.22 3322.44
A 27.50 55.00 110.00 220.00 440.00 880.00 1760.00 3520.00

A# 29.14 58.27 116.54 233.08 466.16 932.33 1864.66 3729.31
B 30.87 61.74 123.47 246.94 493.88 987.77 1975.53 3951.07

With a (free) “Fourier” spectrum 
analyzer we can set the pitches 

exactly!
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But first – a critical note about ‘real’ 
strings (where ‘art’ can’t be avoided)

• strings have ‘stiffness’
• bass strings are wound to reduce this, but not 

all the way to their ends
• treble strings are very short and ‘stiff’
• thus harmonics are not true multiples of 

fundamentals
– fn is increased by a factor of √1+βn2

• concert grands have less inharmonicity
because they have longer strings
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A4 (440) inharmonicity

true 8x440            piano

which should match A7?
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Tuning the ‘A’ keys:                  Ideal strings

With 0.0001 inharmonicity

Need to “Stretch” the
tuning.

Can not match all 
harmonics, must 
compromise  ‘art’

sounds ‘sharp’ sounds ‘flat’

24);2(4400 −== nf n

32 f0

33.6 f0
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(how I’ve done it)
octaves 3-5: no stretch (laziness on my part)

octaves 0-2: tune harmonics to notes in octave 3

octaves 6-7: set ‘R’ inharmonicity to ~0.0003
load note into L and use R(L) ‘Stretched’
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With Db4

With Db5

The effect is larger for higher harmonics,
and so you simply can’t match everything
at the same time.

Trying to set Db7
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but some keys don’t work…

pianos were designed to come apart

(if you break a string tuning it,
you’ll need to remove the ‘action’ anyway)

(remember to number the keys before removing them
and mark which keys hit which strings)

“Regulation”
Fixing keys, and making mechanical adjustments

so they work optimally, and ‘feel’ uniform.
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a pain on spinets
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the hammers
NOT for the novice

(you can easily ruin a set of hammers)
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Let’s now do it for real…

pin turning
unisons (‘true’ or not?)
tune using FFT
put it back together
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