Piano 奖 Tuning For Physicists \& Engineers

 using your
Laptop, Microphone, and Hammer

by
Bruce Vogelaar
313 Robeson Hall
Virginia Tech
vogelaar@vt.edu

at
3:00 pm Room 130 Hahn North March 17, 2012

What our \$50 piano sounded like when delivered.

So far: cleaned, fixed four keys, raised pitch a halfstep to set A4 at 440 Hz , and did a rough tuning...

Bravely put your 'VT physics education' to work on that ancient piano!

Tune: to what? why? how? Regulate: what? Fix keys: how?

frequency of string = frequency of sound

$$
\text { (} \lambda \text { of string } \neq \lambda \text { of sound) }
$$

A piano string is fixed at its two ends, and can vibrate in several harmonic modes.

$$
\begin{aligned}
& L=n \frac{\lambda}{2} \\
& f_{n}=\frac{v}{\lambda}=n \frac{v}{2 L}=n f_{0} \\
& \omega_{n}=2 \pi f_{n} \\
& \quad[v=\text { speed of wave on string }]
\end{aligned}
$$

"Pluck" center \rightarrow mostly 'fundamental' "Pluck" near edge \rightarrow many higher 'harmonics'

What you hear is the sum (transferred into air pressure waves).

$$
P(t)=a_{1} \sin \left(\omega_{1} t\right)+a_{2} \sin \left(\omega_{2} t\right)+a_{3} \sin \left(\omega_{3} t\right)+\ldots
$$

$\boxtimes \quad$ frequency content determines 'timbre'

Given only the 'sum',

what were the components?

Fourier Analysis

"How much of the sum comes
from individual components"

13 slides on how this is done (just can't resist)

Consider a class grade

distribution:

$P(x)$ is the number of students versus grade

$f(x)$ is a 1×1 block at a certain grade

Summing the product of $P(x) f(x)$ gives the number of students with that grade

$$
P(x) f(x):
$$

$P(x)$
"sum"

Piano Tuning

$\mathrm{f}(\mathrm{x})$
$\int P(x) f(x)$
"components"

$P(t)$
$f(t)$
$\int P(t) f(t)$

0

1

0

Piano Tuning

An arbitrary waveform can be

 described by a sum of cosine and sine functions:piano 'note' is a sum of harmonics
want graph of amplitude-vs-frequency

$$
\sqrt{a_{n}^{2}+b_{n}^{2}} \quad \omega=2 \pi f
$$

finding a_{m}

$\int_{\text {cycle }} P(t) \cos \left(\omega_{m} t\right) d t=\int_{\text {cycle }} \sum_{n=0}^{\infty}\left[a_{n} \cos \left(\omega_{n} t\right)+b_{n} \sin \left(\omega_{n} t\right)\right] \cos \left(\omega_{m} t\right) d t$

$\int P(t) \cos \left(\omega_{\mathrm{m}} t\right) d t=\pi a_{m}$ cycle

all terms on right integrate to zero except $m^{\text {th }}$!

$$
\int_{c c c l} \cos \left(\omega_{\mathrm{n}} t\right) \cos \left(\omega_{\mathrm{m}} t\right) d t=\pi \delta_{n m} \quad(0 ; \text { or } \pi \text { if } m=n)
$$

$\int_{\text {cycle }} \sin \left(\omega_{\mathrm{n}} t\right) \cos \left(\omega_{\mathrm{m}} t\right) d t=0$

typical extraction of properties from a distribution

Weighted average

$$
\begin{aligned}
& f_{\text {avg }}=\sum P f \\
& f_{\text {avg }}=\int P f
\end{aligned}
$$

$a_{n}=\int_{-\pi}^{\pi} P(x) \frac{1}{\pi} \cos (n x) d x$
$f_{\text {avg }}=\int f|\psi|^{2}$
$f_{\text {avg }}=\langle\psi| f|\psi\rangle$
rate $\left.\propto\left|\left\langle\psi_{f}\right| f\right| \psi_{i}\right\rangle\left.\right|^{2}$

Typical Application (assume P and ψ are normalized)
class grade average center of mass dipole moments
(same as above, but for continuous distributions) e.g.: Maxwell Boltzmann velocity distributions

Fourier component of $P(x)=\sum_{0}^{\infty}\left[a_{n} \cos (n x)+b_{n} \sin (n x)\right]$
commuting quantum mechanical variables
non-commuting quantum mechanical variables

Fermi's golden rule for transitions between two states.

200 Samples, every 1/200 second, giving $f_{0}=1 \mathrm{~Hz}$

Input 4 Hz pure sine wave

Look for 3 Hz component

Multiply

Average $\sin (4 t) \sin (3 t)=\frac{1}{2}[\cos (1 t)-\cos (7 t)] \quad$ AVG $=0$

Input 4 Hz pure sine wave

Look for 4 Hz component

Multiply

Average $\sin (4 t) \sin (4 t)=\frac{1}{2}[\cos (0 t)-\cos (8 t)] \quad$ AVG $=1 / 2$

Input 4 Hz pure sine wave

Look for 5 Hz component

Multiply

Average $\sin (4 t) \sin (5 t)=\frac{1}{2}[\cos (1 t)-\cos (9 t)] \quad$ AVG $=0$

Great, picked out the 4 Hz input. But what if the input phase is different?
Use COS as well. For example: $4 \mathrm{~Hz}, \phi_{0}=30^{\circ}$; sample 4 Hz

$\left(0.43^{2}+0.25^{2}\right)^{1 / 2}=1 / 2$ Right On!

Signal phase does not matter. What about input at 10.5 Hz ?

Remember, we only had 200 samples, so there is a limit to how high a frequency we can extract. Consider 188 Hz , sampled every 1/200 seconds:

Nyquist Limit Sample $>2 x$ frequency of interest;

lots of multiplication \& summing \rightarrow slow..

Fast Fourier Transforms

- uses Euler's $e^{i \theta}=\cos (\theta)+i \sin (\theta)$
- several very clever features \Rightarrow 1000's of times faster

Free FFT Spectrum Analyzer: http://www.sillanumsoft.org/download.htm "Visual Analyzer"

L	R	$\mathrm{R}(\mathrm{L})$

Frequency

$\|c\|$	
Control	
START	
Pause	Resume

40960 samplels 32768 samples

$=1.25 \mathrm{~Hz}$ resolution

"Circle of $5^{\text {th }}$ s"

Going up by $5^{\text {th }}$ s 12 times brings you very near the same note (but 7 octaves up)
(this suggests perhaps
12 notes per octave)
(this suggests perhap
12 notes per octave)

We define the number of 'cents' between two notes as $1200 * \log _{2}\left(f_{2} / f_{1}\right)$

Octave $=1200$ cents
"Wolf " fifth off by 23 cents.

$\log _{2}$ of 'ideal' ratios
Options for equally spaced notes

We've chosen 12 EQUAL tempered steps; could have been 19 just as well...

Typically set A4 to 440 Hz

Interval	Equal Temperament Frequency Ratio	Difference	Harmonic Series Frequency Ratio			
Octave	$(\sqrt[12]{2})^{12}$	$=$	2.0000	0.0000	2.0000	$=$
Major Seventh	$(\sqrt[12]{2})^{11}$	$=$	1.8877	0.0127	1.8750	$=$
Minor Seventh	$(\sqrt[12]{2})^{10}$	$=$	1.7818	0.0318	1.7500	$=$
Major Sixth	$(\sqrt[12]{2})^{9}$	$=$	1.6818	0.0151	1.6667	$=$
Minor Sixth	$(\sqrt[12]{2})^{8}$	$=$	1.5874	-0.0126	1.6000	$=$
Perfect Fifth	$(\sqrt[12]{2})^{7}$	$=$	1.4983	-0.0017	1.5000	$=$
Tritone	$(\sqrt[12]{2})^{6}$	$=$	1.4142	0.0000	1.4142	$=$
$(\sqrt[12]{2})^{5}$	$=$	1.3348	0.0015	1.3333	$=$	$4 / 2 / 1$
Perfect Fourth	$(\sqrt[12]{2})^{4}$	$=$	1.2599	0.0099	1.2500	$=$
Major Third	$(\sqrt[12]{2})^{3}$	$=$	1.1892	-0.0108	1.2000	$=$
Minor Third	$(\sqrt[12]{2})^{2}$	$=$	1.1225	-0.0025	1.1250	$=$
Major Second	$(\sqrt[12]{2})^{1}$	$=$	1.0595	-0.0072	1.0667	$=$
Minor Second	$(\sqrt[12]{2})^{0}$	$=$	1.0000	0.0000	1.0000	$=$
Unison			$1 / 1$			

for equal temperament:
tune so that desired harmonics are at the same frequency;
then, set them the required amount off by counting 'beats'.

Equal temperament beatings (all figures in Hz)												
261.626	277.183	293.665	311.127	329.628	349.228	369.994	391.995	415.305	440.000	466.164	493.883	523.251
0.00000			14.1185	20.7648	1.18243		1.77165	16.4810	23.7444			C
		13.3261	19.5994	1.11607		1.67221	15.5560	22.4117			B	
	12.5781	18.4993	1.05343		1.57836	14.6829	21.1538			B b		
11.8722	17.4610	. 994304		1.48977	13.8588	19.9665			A			
16.4810	938498		1.40616	13.0810	18.8459			A b				
. 885824	$)$	1.32724	12.3468	17.7882			G				Funda	mental
	1.25274	+ 6539	16.7898			F \ddagger						ave
1.18243	10.9998	15.8475	-		F						Majo	sixth
10.3824	14.9580			\pm							Mino	sixth
14.1185			E b	From C, set G above it such that							Perfe	fifth
		D		an octave and a fifth above the C							Perfect fourth	
	C\#										Major third	
C				you hear a 0.89 Hz 'beating'							Mino	third

Interval

Unison		$1: 1$
Octave	$2: 1$	
Major sixth	$5: 3$	
Minor sixth	$8: 5$	
Perfect fifth	$3: 2$	
Perfect		
fourth		
Major third	$5: 4$	
Minor third	$6: 5$	

Beating above the lower pitch

Tempering

These beat frequencies are for the central octave.

Exact
Exact
Wide
Narrow
Slightly narrow
Slightly wide
Wide
Narrow

I was hopeless, and even wrote a synthesizer to try and train myself...
but I still couldn't 'hear' it...

Is it hopeless?

not with a little help from math and a laptop...

we (non-musicians) can use a spectrum analyzer...

With a (free) "Fourier" spectrum analyzer we can set the pitches exactly!

True Equal Temperament Frequencies

	0	1	2	3	4	5	6	7	8
C		32.70	65.41	130.81	261.63	523.25	1046.50	2093.00	4186.01
C\#		34.65	69.30	138.59	277.18	554.37	1108.73	2217.46	
D		36.71	73.42	146.83	293.66	587.33	1174.66	2349.32	
D\#		38.89	77.78	155.56	311.13	622.25	1244.51	2489.02	
E		41.20	82.41	164.81	329.63	659.26	1318.51	2637.02	
F		43.65	87.31	174.61	349.23	698.46	1396.91	2793.83	
F\#		46.25	92.50	185.00	369.99	739.99	1479.98	2959.96	
G		49.00	98.00	196.00	392.00	783.99	1567.98	3135.96	
G\#		51.91	103.83	207.65	415.30	830.61	1661.22	3322.44	
A	27.50	55.00	110.00	220.00	440.00	880.00	1760.00	3520.00	
A\#	29.14	58.27	116.54	233.08	466.16	932.33	1864.66	3729.31	
B	30.87	61.74	123.47	246.94	493.88	987.77	1975.53	3951.07	

But first - a critical note about 'real' strings (where 'art' can't be avoided)

- strings have 'stiffness'
- bass strings are wound to reduce this, but not all the way to their ends
- treble strings are very short and 'stiff'
- thus harmonics are not true multiples of fundamentals
$-f_{n}$ is increased by a factor of $\sqrt{1+\beta \mathrm{n}^{2}}$
- concert grands have less inharmonicity because they have longer strings

A4 (440) inharmonicity

Tuning the ' A ' keys:
Ideal strings
$f_{0}=440\left(2^{n}\right) ; n=-4 \cdots 2$

(how l’ve done it)

octaves 3-5: no stretch (laziness on my part)

octaves 0-2: tune harmonics to notes in octave 3

octaves 6-7: set ' R ' inharmonicity to ~ 0.0003 load note into L and use $R(L)$ 'Stretched'

Trying to set Db7
The effect is larger for higher harmonics, and so you simply can't match everything at the same time.

With Db4

With Db5

but some keys don't work...

pianos were designed to come apart

(if you break a string tuning it, you'll need to remove the 'action' anyway)
(remember to number the keys before removing them and mark which keys hit which strings)
"Regulation"
Fixing keys, and making mechanical adjustments so they work optimally, and 'feel' uniform.

A clickable version of this image is now available at pianoparts.com/upright

,

Action of a grand piano

(10) Hammer
(9) Repetition lever
(8) Hammer shank
(5) (7) Drop screw
(4) (6) Hammer flange screw
(5) Jack
(4) Regulating screw
(3) Wippen
(2) Capstan
(1) Key

"Voicing" the hammers

NOT for the novice

(you can easily ruin a set of hammers)

Let's now do it for real...

pin turning

 unisons ('true' or not?) tune using FFT put it back together