

T.J. Langford, E.J. Beise, H. Breuer University of Maryland C.R. Heimbach, J.S. Nico National Institute of Standards and Technology June 7, 2013

Outline

- Fast Neutrons as backgrounds
- FN Detection Techniques
 - Capture-gated spectroscopy
 - ³He rise-time discrimination
- FaNS-1 at the surface and KURF
- FaNS-2: Design and Testing

Fast Neutron Backgrounds for Underground Science

- Fast neutrons play a particularly problematic role in low background experiments
 - Deeply penetrating
 - Create long lived isotopes (Co60, Xe137,...)
 - FNs are indistinguishable from WIMP dark matter interactions
- Important to know the surface fast neutron spectrum for shielding and transport of materials

Fig. 7. Differential cross-section of neutron production by 190 GeV muons for a 10 MeV threshold in neutron energy. The data points represent the results of the NA55 experiment. The thin-line histogram shows the GEANT4 simulation considering muon–nucleus interaction only; the thick histogram includes all physics processes. The dashed line represents the FLUKA results for the latter case. Araújo, et. al. NIM A, 2005

Fig. 7. Differential cross-section of neutron production by 190 GeV muons for a 10 MeV threshold in neutron energy. The data points represent the results of the NA55 experiment. The thin-line histogram shows the GEANT4 simulation considering muon-nucleus interaction only; the thick histogram includes all physics processes. The dashed line represents the FLUKA results for the latter case. Araújo, et. al. NIM A, 2005

Surface Fast Neutron Spectrum

Fig. 8. Differential flux, $d\phi/dE$, $(\text{cm}^{-2} \text{ s}^{-1} \text{ MeV}^{-1})$ of cosmic-ray induced neutrons as a function of neutron energy. The data points are our reference spectrum from the measurements, the solid curve is our analytic model, and the dashed curve is the JEDEC model [38].

Array of 14 Bonner spheres, count rates are unfolded to make a spectrum

Gordon, et al., IEEE Trans 51, (2004)

The UMD/NIST Fast Neutron Spectrometers

The FaNS Detectors

- Arrays of plastic scintillator segments and helium-3 proportional counters
 - Segmentation improved energy reconstruction
- Use Capture-gated Spectroscopy for particle identification and energy information
- Calibrated at NIST with Cf-252, DD, and DT neutrons
- Measure the surface and underground neutron spectra
 - FaNS-I: operated at Kimballton Underground Research Facility
 - FaNS-2: to be operated at shallow location at NIST

FaNS-I

FaNS-I

Capture Gated Spectroscopy

Risetime of Helium Signals

Allows for suppression of alpha, gamma, and microdischarge noise signals

Use preamp signals directly Digitize signals Risetime =50% - 10%

Langford et al. http://arxiv.org/abs/1212.4724

Calibrations as NIST

- Used two mono-energetic neutron generators to measure FaNS-1 energy reconstruction
- Both show good agreement with MCNP
- Shows that we have full energy deposition

FaNS-1 at the Surface

- Operated FaNS-1 for 1.6x10⁵ seconds
- Recorded I.3x10⁵ events (0.8 Hz)
- After cuts, ~6000 neutron events (0.04Hz)
- Recorded neutron energies up to 300 MeV

FaNS-1 at the Surface

FaNS-1 at KURF

- Multiple upgrades to electrons to reduce backgrounds and noise
- Measured efficiency with Cf-252 source (1.3+-0.1)%
- Final dataset included 100 days of operation

FaNS-1 at KURF - 1450mwe

- 62 day dataset
- I.67x10⁵ events
- 250 counts pass all cuts
- 92 remain after BG sub.

FaNS-1 at KURF - 1450mwe

(alpha,n) vs Fission Spectrum

- The measured spectrum at KURF is more (alpha,n)-like
- We are working on simulating the expected spectrum based on BG measurements of U,Th

Mei Hime 2005

FIG. 26: The neutron energy spectrum arising from (α,n) reactions due to radioactivity in the rock. We predict a harder energy spectrum in Gran Sasso rock relative to standard rock owing to the presence of carbon and magnesium.

Data Acquisition System

FaNS-2 Operation at NIST

- NIST provides an array of neutron sources for calibrations
 - Californium-252 (known activity at 1%)
 - DD and DT mono-energetic generators
 - AmBe
- FaNS-2 is operating in a low scatter room measuring source and ambient neutrons
 - Low number of backscattering neutrons
 - Effectively no shielding of ambient neutrons from cosmic rays
- FaNS-2 will move to a 20mwe lab at NIST soon

Neutron Source Calibration

Have measured the absolute efficiency with calibrated Cf source, ~9% above IMeV

Cosmogenic Neutrons at NIST

Cosmogenic Neutrons at NIST

Friday, June 7, 13

Conclusions

- We have shown that FaNS-1 has sensitivity up to 300 MeV
- FaNS-I has been calibrated with Cf, DD, and DT neutron sources
- MCNP simulations have been done that match the response of the detector
- A measurement of the neutron spectrum at KURF has been made
- FaNS-2 is now operating, and moving underground soon

Backup Slides

FaNS-1 at KURF - 1450mwe

Friday, June 7, 13

FaNS-2

FaNS-2

Data Acquisition Requirements

- Synchronous sampling and triggering of 56 channels
- Operate in three trigger modes:
 - Gamma calibration: Any PMT triggers all PMTs
 - Muon calibration: Trigger on high multiplicity PMT events
 - Neutron data: Any helium signal triggers all channels
 - ~Ims long traces with ZLE to reduce data size
 - Large dynamic range (30 keV:200 MeV per channel)
- Need to automatically switch between different modes

Neutron Trigger

DD Neutron generator

PMT Signal Conditioning

PMT Signal Conditioning

- Custom circuit board
 8ch, NIM form factor
 Factor of 10 increase in dynamic range
 Increase of signal width from 10ns to 50ns
 ➡Reduces digitization
 - - error

PMT Signal Conditioning

Custom circuit board
8ch, NIM form factor
Factor of 10 increase in dynamic range
Increase of signal width from I0ns to 50ns
⇒Reduces digitization error

X Caen controller

File Link Help

🗖 Synch Board	Start	Force	Single	J	0	1	2	3	4	5	6	7
☐ Save				Use ch	Y	Y	Y	Y	Y	Y	Y	Y
Skip	0	-		Trig Act	Acq Only	Acq Only	Acq Only	Acq Only	Acq Only	Acq Only	Acq Only	Acq Only
Read ini	Write ini			DC level	6255	5560	6380	6145	6325	5980	6405	6550
Events	0	0		Trig pol	Falling	Falling	Falling	Falling	Falling	Falling	Falling	Falling
Seconds	0	0		Trig level	3980	3980	3980	3980	3980	3980	3980	3980
Record Length	500			zs Sign	Under	Under	Under	Under	Under	Under	Under	Under
Ext Trigger	Disabled	Trig Coin	0	zs Weight	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine
Post trig %	50		🗖 0 on Ext	zs Thresh	3980	3980	3980	3980	3980	3980	3980	3980
Events/Read	100	Zero Supp	Amp] zs Pre	0	0	0	0	0	0	0	0
Panel I/O	NIM	Gate	None	zs Post	0	0	0	0	0	0	0	0
Monitor	V Level	Count Trig Mode	All]								
Interrupt	Interrupt	Events for Int	1		Caen							
Int timeout	100			tra	ce 🧭 0 🖌 1 🖌	2 🖌 3 🖌 4 🖌 5	6 🧭 6 🖌 7 🛛 tile	< cfs > cfs Sav	e Mca Log 01	Mca binW 2	X: 487 Y	21
Link Type	None	Link Branch	0	1 6				0				
Node	0	Base	0		4.0	95			100 C			
Homo	built co	do with (~++				~	N.	// _			_
			_TT						// 1	• –	-	
- GUI uses QT for cross platform								N	'/ L	_ive	Irace	S
- Controls an arbitrary number of								, l				
cards set at compile time									1			
e i us, set at complie time				.	24	37						
- Each card can operate separately				ely 📗	2,7	57			1			
or any combination can be									1			
600m	, dinatad							1				
	Jinated								1			

780

122,147

122,255

122,364

- Settings can be loaded from a file
- Controlled by an external Python function over TCP/IP

X Caen controller

File Link Help

🗖 Synch Board	Start	Force	Single	1	0	1	2	3	4	5	6	7
☐ Save				Use ch	Y	Y	Y	Y	Y	Y	Y	Y
Skip	0			Trig Act	Acq Only	Acq Only	Acq Only	Acq Only	Acq Only	Acq Only	Acq Only	Acq Only
Read ini	Write ini			DC level	6255	5560	6380	6145	6325	5980	6405	6550
Events	0	0		Trig pol	Falling	Falling	Falling	Falling	Falling	Falling	Falling	Falling
Seconds	0	0		Trig level	3980	3980	3980	3980	3980	3980	3980	3980
Record Length	500			zs Sign	Under	Under	Under	Under	Under	Under	Under	Under
Ext Trigger	Disabled	Trig Coin	0	zs Weight	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine
Post trig %	50	1	🗖 0 on Ext	zs Thresh	3980	3980	3980	3980	3980	3980	3980	3980
Events/Read	100	Zero Supp	Amp	zs Pre	0	0	0	0	0	0	0	0
Panel I/O	NIM	Gate	None	zs Post	0	0	0	0	0	0	0	0
Monitor	V Level	Count Trig Mode	All]								
Interrupt	Interrupt	Events for Int	1		🔊 🗿 Caen	_	_	_	_	_	_	
Int timeout	100			tra	ace 🥪 O 🥪 1 😡	2 😡 3 😡 4 😡 5	🥁 6 🥪 7 🛛 tile	< cfs > cfs Save	Mca Log 0 M	4ca binW 2	K: 487 Y:	21
Link Type	None	Link Branch	0		38 204			9				
Node	0	Base	0		50,204	A A A A A A A A A A A A A A A A A A A						

- Homebuilt code with C++
- GUI uses QT for cross platform
- Controls an arbitrary number of cards, set at compile time
- Each card can operate separately or any combination can be coordinated
- Settings can be loaded from a file
- Controlled by an external Python function over TCP/IP

python Python Control Program

- Platform independent development
- Simple to program, easy to debug!
- Commands sent over TCP/IP to DAQ program
- Script controls card settings, start, stop, saving data, writing MCAs, etc.
- Can be controlled locally or remotely
- Easy interoperation with HV control, logging, email notifications, environmental monitoring, and data transfer

```
Image: Image:
 61 🔍
             for iters in xrange(nIters):
 62
                        date = time.strftime("%Y-%m-%d-%H-%M-%S")
 63 🔻
                        if emailSent:
  64
                                 fileList = []
  65
                                 mcaList = []
  66
  67
                        # PMT Calibration (Gamma)
 68 7
                        if calRun == 1:
  69
                                 calIniFile = calIniLocation + "022013-gammaCoord.ini"
  70
                                 s.send("set_preset_time " + str(board) + " " + str(secsPerCal))
  71
                                 s.send("set_preset_counts " + str(board) + " 0")
 72
 73
                                 s.send("set_skip " + str(board) + " 10000")
 74
                                 s.send("zero_time " + str(board))
  75
                                 s.send("zero_counts " + str(board))
  76
                                 s.send("read_ini " + str(board) + ' ' + calIniFile)
  77 1
                                 if useDate:
  78
                                         dataName = dataLocation + "GammaSync-" + date + ".dat"
  79 🔻
                                 else:
  80
                                         dataName = dataLocation + baseName + "-" + str(iters) + "_GammaSync.d
  81
                                 fileList.append(dataName)
                                 s.send("write_data " + str(board) + " " + dataName)
  82
  83
                                 print "\nStarting gamma run ", str(iters), "at ", time.strftime("%Y-%m-%d
  84
                                 sys.stdout.flush()
  85
                                 logFile.write("\nStarting gamma run ", str(iters), "at ", time.strftime(
  86
                                 logFile.flush()
  87
                                 s.send("start " + str(board))
  88
                                 time.sleep(secsPerCal+5)
  89
                                 s.send("stop " + str(board))
  90
                                 s.send("write_data " + str(board) + " ")
 91
                                 elapsed = s.send("get_elapsed_time " + str(board))
  92
                                 numEvents = s.send("get_elapsed_counts " + str(board))
  93
                                 for i in range(4):
  94
                                         mcaName = dataName[0:-4] + "-b" + str(i) + ".mca"
                                         s.send("write_hist " + str(i) + " " + mcaName)
  95
  96
                                         mcaList.append(mcaName)
 97
                                         s.send("zero_hist " + str(i))
 98
                                 s.send("zero_time " + str(board))
 99
                                 s.send("zero_counts " + str(board))
100
                                 print numEvents, " Events in ", elapsed, " seconds \n"
101
                                 sys.stdout.flush()
102
                                 logFile.write(print numEvents, " Events in ", elapsed, " seconds \n")
103
                                 logFile.flush()
104
```

Gamma/Muon Trigger

DAQ at Work!

NIST nTOF Apparatus

Time of Flight

Friday, June 7, 13

Time of Flight Deposited Energy (MeVee) 2 3 4

Measured Light Response

FaNS-2 Outlook

- Efficiency calibration up to 10 MeV with Cf neutron sources
- Measure response to 14 MeV neutrons with DT generator
- Continue collecting ambient neutron data at the surface, measure from 500 keV to >1 GeV
- Install in a shallow underground facility at NIST to measure the muon induced neutron spectrum
- Simulate the spectrum with Geant4/Fluka/MCNP to compare with data