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Review: 6D F-theory and elliptic Calabi-Yau threefolds

Using tools from algebraic geometry and F-theory, we have a systematic
approach to constructing and classifying elliptic Calabi-Yau threefolds

Classifying elliptic CY threefolds

Elliptic CY3 π : X3 → B2

Weierstrass model y2 = x3 + fx + g,
f ∈ Γ(O(−4KB)), g ∈ Γ(O(−6KB))

Gross: finite number of topological types (up to birational isomorphism)
Desire: explicit construction

• Basic idea: classify bases B, then tune Weierstrass for each base
Focus on Weierstrass models on smooth bases (e.g. not SCFT)

•Minimal models + work of Grassi:
B = P2,Fm or blowup thereof (or Enriques)
⇒ constructive approach to enumeration:
finite Weierstrass strata over each base [KMT].
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Non-Higgsable groups in F-theory⇔ forced Kodaira singular fibers

• “Non-Higgsable clusters” give lower bound on normal bundle of divisors

The base B2 is a complex surface.

Contains homology classes of complex curves Ci

For C ∼= P1 ∼= S2, local geometry encoded by normal bundle O(m)

C · C = m; e.g., NC ∼= O(2) ∼= TC : deformation has 2 zeros, C · C = +2

If NC ∼= O(−n), n > 0,C is rigid (no deformations)

For O(−n), n > 2, base space is so curved that singularities must pile up to
preserve Calabi-Yau structure on total space
⇒ non-Higgsable gauge group = forced singular fiber

Example: N = O(−3)⇒ type IV fiber (SU(3) group)
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Classification of 6D “Non-Higgsable Clusters” (NHC’s) [Morrison/WT]

Clusters of curves imposing generic nontrivial codimension one singularities:
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• Any other combination including -3 or below⇒ (4, 6) at point/curve

NHC’s a useful tool in classifying bases B2 for EF CY3’s
– Also useful for 6D SCFT’s [Heckman/Morrison/(Rudelius)/Vafa, . . . ]
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Classifying bases: toric B2

Start with P2,Fm, blow up torically, constrain by NHC’s

Generic EF Hodge #’s [Morrison/WT, WT]
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• 61,539 toric bases (some not strictly toric: -9, -10, -11 curves)

• Reproduces large subset of Kreuzer-Skarke database of CY3 Hodge #’s
Boundary of “shield” from generic elliptic fibrations over blowups of F12.
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Beyond toric: approach allows construction of general (non-toric) bases

– Computed all 162, 404 “semi-toric” bases w/ 1 C∗-structure [Martini/WT]

Generally: Keep track of cone of effective divisors as combinatorial data

• All bases for EF CY threefolds w/ h2,1(X) ≥ 150 [WT/Wang]

Kreuzer-Skarke

Our list

h1,1

h2,1

Technical issues at large h1,1(X), small h2,1(X):
Infinite generators for cone, Multiply intersecting −1 curves

Upshot: modest expansion of possibilities beyond toric, semi-toric
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Classifying elliptic CY3’s: Tuning [Johnson/WT ’14, ’16; for SCFT: HMRV]

Given generic Weierstrass on B2: y2 = x3 + fx + g,
tune f , g⇒ enhanced gauge group G, matter
e.g. on P2, f = f3z3 + · · · , g = g3z4 + · · · ⇒ E6 on {z = 0}.

• Can do systematically, finite number of tunings on each B2

•Many complications w/interesting physics, some subtle outstanding issues

• Hodge numbers from base physics/geometry [Morrison/Vafa]

h1,1(X) = rk(G) + T + 2 = rk(G) + h1,1(B) + 1 (Shioda-Tate-Wazir)
h2,1(X) = Hneutral − 1 = 272 + dim(G)− 29T − Hcharged .

• Can tune explicitly using local toric model, globally in toric bases

N

M
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Systematic classification of EFS CY3s: tuning

• Blowups, tuning from minimal bases P2,Fm decrease h2,1

• Codimension 1, 2 sing.’s→ G, matter→ r,V,Hch → h1,1, h1,2

• Upshot: given base, what you can tune ∼= allowed by anomaly cancellation
(with some interesting exceptions!)

Local swampland candidates

• SU(21), SU(23) on +1 curve, SU(15) on + 2 curve, . . . (?)

• SU(2j + 1), SU(2j + 8) on -1, -2 [e.g. SU(3) × SU(10)] (? No Tate form)

. . .

SO(8) × SU(2) on *, -2: low-energy inconsistency
[Ohmori/Shimizu/Tachikawa/Yonekura]
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EFCY3’s w/ h2,1 ≥ 350, Fm+ tuning→WM classification [Johnson/WT ’14]

untuned Weierstrass

+ SUH2L

+ SUH2L x SUH2L

+ SUH3L x SUH2L or

+ G_2 x SUH2L

+ SUH2L x SUH2L x SUH2L

H11, 491L

H12, 462L

H10, 376L

H19, 355L

H20, 350L

•Matches KS; non-toric + toric at (19, 355); new non-toric below 350
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Systematic tunings on toric models [Huang/WT, TA]

Tate tunings↔ reflexive polytopes (modulo some technical caveats)

Can do a branched search, find all allowed tunings on Btoric

– Use local rules [JT], + global group constraints [Bertolini/Merkx/Morrison]

Tunings⇒
• All KS Hodge #’s h2,1 ≥ 240
• All but 8 h1,1 ≥ 240
⇒ most known CY3’s w/large h’s are EF

(cf. [Gray/Haupt/Lukas,
Candelas/Constantin/Skarke,
Anderson/Apruzzi/Gao/Gray/Lee])
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Results on CY3’s: global picture

• Systematic approach to construction

• Complete control at large h2,1(X) (e.g., proof h2,1 ≤ 491)

• Toric bases give good representative global picture, capture boundary

• Finite number of bases, minimal P2,Fm on left boundary

• “Most” bases B2 have non-Higgsable GNA

(all but weak Fano = gdP)
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Some outstanding/ongoing issues:

• Difficult regime: large h1,1(X), small h2,1(X)

•Mordell-Weil (much recent work)

Possible further issues: singular bases, Enriques
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4D F-theory compactifications

Story parallel in many ways:

– Compactify on Calabi-Yau fourfold, base B3 = complex threefold

– Empirical data suggest similar structure (though less complete for CY4’s)

No proof of finiteness
Mori theory threefold analog of minimal model bases more subtle

All evidence so far: moduli space of CY 4’s quite parallel to CY3 story
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4D non-Higgsable clusters [Morrison/WT]
(see also: Anderson/WT, Grassi/Halverson/Shaneson/WT, cf. Halverson talk)

At level of geometry/complex structure, similar to 6D but more complicated

Expanding in coordinate z, around divisor (surface) S = {z = 0},
f = f0 + f1z + f2z2 + · · ·

Compute using geometry of surfaces: up to leading non-vanishing term,
fk ∈ O(−4KS + (4− k)NS), gk ∈ O(−6KS + (6− k)NS)

Single group clusters: SU(2), SU(3),G2, SO(7), SO(8),F4,E6,E7,E8

(cannot have: non-Higgsable SU(5), SO(10)

the only 2-factor products that can appear are:

G2 × SU(2), SO(7)× SU(2), SU(2)× SU(2),

SU(3)× SU(2), SU(3)× SU(3)

4D clusters can have chains, loops, branching . . .
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Classification of elliptic Calabi-Yau fourfolds

Mathematical minimal models→Mori theory.
No proofs, but finite classification seems manageable.
Rough “physicist’s” picture – ignore various subtleties
Focus on classifying bases B3, finite number [Di Cerbo/Svaldi]

“minimal models” ∼ Fm but more complex – populate LHS of Hodge plot
Roughly, min B3 = {P1 (conic) bundle over B2, B2 bundle over P1, Fano}

Blow up curves, points: h3,1 ↓, h1,1 ↑; finite # of options on each minimal B3

w/Halverson: P1 bundles over toric bases B2
(w/Anderson: B2 = gdP, smooth heterotic dual)
Finite # P1 bundles over fixed B2

w/Wang: B2 bundles over P1, B2 supports EF CY3, finite # B2, bundles
Max h3,1 = 303,148

Fano: 105 Fano bases <∞

Possible issue: irrational bases (Morrison/WT TA: similar (?))
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Monte Carlo on threefold bases for EF CY4’s (w/ Yinan Wang)

Random walk on a graph: pi ∝ νi = # of neighbors, e.g.

Explore connected toric threefold bases from P3 by blow-up, -down transitions

Estimate number of connected toric threefold bases ∼ 1048±2
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Elliptic Calabi-Yau fourfolds:

Seems closely parallel to EF CY3, but mostly empirical evidence

• Semi-systematic classification for toric B3

• h3,1 ≤ 303, 148 (?)

• At large Hodge numbers, most known CY4’s elliptic (?)

• Toric→ good global picture ??
(more exceptions e.g. irrational, but appear similar [Morrison/WT])

•Most bases not weak Fano⇒ have non-Higgsable G

• Need clearer analog of minimal model/Grassi result

• Include singularities (??)
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Codimension 2 singularities: tricky, not completely classified

Simple case: rank one enhancement [Katz-Vafa]

e.g.
SU(N) enhanced⇒ SU(N + 1)

SU(N + 1) adjoint→ SU(N)

Similar for e.g. AN−1 → DN : SU(N)

Realized by embedding of Dynkin diagrams in singularity

Other cases more complex [Sadov, Morrison/WT, Esole/Yau]

AN−1 ⇒ A2N−1

gives SU(N) + or adj + 1

Analyze through explicit resolution in specific cases [MT, Esole/Yau, HLMS, . . . ]
[Grassi/Halverson/Shaneson: alternative: local deformation?]
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“Topology” of matter representations

Some reps are not understood in F-theory but seem okay from supergravity
Genus classification from anomaly structure [Kumar/Park/WT]

2g− 2 = (K + C) · C =
∑

R

xRgR − 2

gR =
1
12

(2CR + BR − AR)

(group theory coefficients: trRF2 = ARtrF2, trRF4 = BRtrF4 + CR(trF2)2)
e.g. for SU(N) , g = 1

Structure suggests ∼ Kodaira: Rep. theory↔ cod. 2 sing.’s
Conjecture: non-adjoint g > 0⇒ arithmetic genus of discriminant singularity
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Matter on singular divisors

Examples:

SU(3) on double points

– From unHiggsing U(1) × U(1) models [Cvetic/Klevers/Piragua/WT]

– From SU(6)→ SU(3) × SU(3)→ SU(3) and transitions via SCFT’s
[Anderson/Gray/Raghuram/WT]

SU(2) on triple points

– From unHiggsing U(1) q = 3 models [Klevers/WT]

All examples have nontrivial Weierstrass form, rely on non-UFD ring on C.
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General construction for SU(N) , . . . on singular divisor
[Klevers/Morrison/Raghuram/WT]

Follow term by term in discriminant a la [Morrison/WT ’11]

Allow component functions not in R(C) but in extension

Example:
SU(2) on C : σ = ξ3 − Aη3 = 0 (A, ξ, η in R(C)); triple points at ξ = η = 0

Include α : α3 = A, ⇒ ξ = αη

Expanding f = f0 + f1σ + f2σ2 + · · · , g = g0 + g1σ + · · · ,

Need 4f 3
0 + 27g2

0 = σ(· · · ). In UFD f0 = −3φ2, g0 = 2φ3 ⇒ ∆0 = 0.

Choose φ = α2η, not in R(C)!

f0 = −3φ2 = −3α4η2 = −3Aξη, g0 = 2φ3 = 2α6η3 = A2η3

∆0 = 4f 3
0 + 27g2

0 = 108(−A3ξ3η3 + A4η6) = −108A3η3σ!

Can continue in this fashion, similar for SU(N) on double points.
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Exotic matter representations on singular divisors

This approach gives SU(N) , SU(2)

Claim: that’s it for SU(N) g > 0 representations.

Others: affine Dynkin diagram with G→ extra node

e.g. SU(2) → D̂4

SU(3) → Ê6

Some swamp questions: for which combinations of matter find Weierstrass
models?
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Conclusions

– Systematic control of construction and classification of elliptic CY3’s,
including systematic tunings in toric cases

– All KS Hodge numbers with h2,1 ≥ 240 reproduced by tunings

– Appear to be 8 KS examples with h1,1 > 240 not (torically) elliptically
fibered

– Big picture for fourfolds appears similar to CY3, but additional complexity.
Would like clearer understanding of threefold bases via Mori theory

– Systematic construction of exotic matter structure over singular divisors
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