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Phase Transitions in Driven Bilayer Systems: A Monte Carlo Study
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We investigate the phase diagram of a system with two layers of an Ising lattice gas at half fillin
addition to the usual intralayer nearest neighbor attractive interaction, there is an interlayer potenJ.
Under equilibrium conditions, the phase diagram is symmetric underJ ! 2J, though the ground states
are different. The effects of imposing a uniform external drive, studied by simulation techniques
dramatic. The mechanisms responsible for such behavior are discussed. [S0031-9007(96)0061

PACS numbers: 64.60.Cn, 05.70.Fh, 82.20.Mj
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Over a decade ago, motivated by the physics of fast io
conductors, Katzet al. [1] introduced a simple modifica-
tion to the well known Ising lattice gas [2], so thatnonequi-
librium steady states may be studied. The dynamics of
model consists of particle hopping, or Kawasaki exchan
[3], controlled by the usual Ising Hamiltonian and a the
mal bath at temperatureT , as well as a bias in one directio
so as to describe the effect of a uniform, dc “electric” fie
E, acting on the “charged” particles. In the ensuing yea
many unexpected properties have been discovered in
prototype model and numerous of its variants, and, by n
some are well understood [4]. On the other hand, a f
of the surprising results observed in Ref. [1] remain une
plained. An example is the basic question: Why sho
the critical temperature,TcsEd, increase withE, saturating
at about 40% above the Onsager temperature asE ! `

[5]? Indeed, one might have predicted alowering of Tc,
since large fields should overwhelm the nearest neigh
coupling whenever hops along the field are attempted
that the system is effectively subjected to an extra no
Given simulation data and a better understanding of ot
phenomena displayed by this system, simple argumen
favor of anincreasedTc emerged. However, to date, the
is still no intuitive picture which guides us to the corre
behavior. One motivation of our study is to explore sim
ilar systems, in order to test which type of argument
successful in “predicting” the qualitative behavior of th
novel phase diagram.

At an entirely different level, this work is motivate
by interesting properties in driven multilayered structur
observed in both physical systems [6] and Monte Ca
simulations [7,8]. In the former, the process of interca
tion, where foreign atoms or molecules diffuse into a la
ered host material, is well suited for modeling by drive
layered lattice gases [8]. On the simulation front, the
fects of particle transfer betweentwo decoupledIsing sys-
tems, subject to a global conservation law, turn out to
quite intriguing:two transitions were found [7]. AsT is
lowered, the disordered (D) phase transforms into a s
with strips in both layers, reminiscent of two entirely u
related, yet aligned, single-layer driven systems. We w
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refer to this state as the strip phase (S). AsT is lowered
further, a first order transition occurs. The ordered st
now resembles the equilibrium case, displaying homo
neous, opposite magnetization on the two planes. In
lattice gas picture, the planes are mainly full or empty,
that this state will be labeled by FE. Why there should
two transitions was not well understood. This impass
as well as the generic microscopics of intercalated co
pounds, motivates our study of a bilayer driven syste
with interlayer interactions. The remainder of this Let
ter is devoted to a brief description of our model and t
simulation results. A consistent, intuitive picture emerge
We conclude with suggesting possible analytic approac
and other tests of this picture.

Our system consists of two fully periodicL 3 L square
lattices, arranged in a bilayer structure. The sites
labeled by (j1, j2, j3), with j1, j2  1, . . . , L and j3 
1, 2. Each may be empty or occupied by a particle,
that a configuration of the system is specified by t
set of occupation numbershns j1, j2, j3dj, where n  0
or 1. Alternatively, we may use the spin language:s ;
2n 2 1  61. For simplicity, we study only half-filled
systems, i.e.,

P
n  L2 or

P
s  0. Next, we endow

the spins with nearest neighbor interactions, so that
Hamiltonian is given byH ; 2J0

P
nn0 2 J

P
nn00,

where n and n0 are nearest neighborswithin a given
layer, while n and n00 differ only by the layer index.
Thus, the first sum represents the usual two-dimensio
Ising model with couplingJ0, and the second sum take
into account the interactions across the layers. Our st
is restricted to positiveJ0, with several values ofJyJ0

in the rangef210, 10g. The choice of negativeJ ’s is
motivated by the physics of intercalated materials [6,
To simulate equilibrium systems coupled to a therm
bath at temperatureT , we use spin-exchange (Kawasak
[3] dynamics with the usual Metropolis rate [9]. So
particles are allowed to hop to nearest neighbor ho
with probability minh1, exps2DH ykBT dj, where DH

is the change in energy due to the hop. Since t
dynamics becomes very slow for largejJj, we exploit
spin flip (Glauber) dynamics to explore the transitions
© 1996 The American Physical Society
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these regions, rather than a more complex algorithm [1
Finally, to drive this system into nonequilibrium stead
states, we incorporate the “electric” field (aligned wi
the 1 axis) in the standard way, i.e., by adding6E to
DH for hops against or along the field [1,4]. The go
of this study is to map out the phase diagram in theT-J-
E space. In the following, the main results are report
while details will be published elsewhere [11]. Here,T
is given in units of the single layer Onsager temperatu
0.5673J0ykB; bothJ andE are given in units ofJ0.

The systematic part of our runs involves lattices w
L  12 and30 and100 3 103 Monte Carlo steps (MCS)
per site. Typically, these runs are set at fixedJ, E,
and T , starting with two types of initial conditions
ordered and random. Discarding the first10 3 103 MCS,
measurements are then taken every 200 MCS. To exp
first order transitions, we look for hysteresis by sweep
in both T and J, where T sJd is raised or lowered in
steps of 0.05 (0.02) after100 3 103 MCS. Apart from
these systematic studies, we have performed very l
runs (up to5 3 106 MCS) at a few points in paramete
space, mainly to explore metastability. We have a
investigated a few systems with various sizes up to100 3

100, in order to be more confident about the existen
of certain steady states in the thermodynamic lim
As order parameters, we have chosen the appropr
structure factors [1,4]. In the S and FE phases, they
Ss0, 1, 0d andSs0, 0, 1d, respectively, whereSsl1, l2, l3d ;
kjñsl1, l2, l3dj2l and

ñsl1, l2, l3d ;
1

2L2

X
ns j1, j2, j3de2pifs j1l11j2l2dyL1j3l3y2g.

Of course, in practice, thek l’s are time averages, take
over the run. Occasionally, when simple averaging p
duces highly irregular results, typically near first ord
transitions, we resort to time traces ofjñj2. These re-
veal the system being “caught” for an extended period
time (say,30 3 103 MCS) in a metastable state, befo
settling into the stable, steady state for the rest of the r
In these instances, we reperform the average using o
the last part of the data. In all cases, the resultant val
fall within the expected statistical variations.

To identify the second order transitions, we consid
the fluctuations ofjñj2 as a function ofT , with fixed
J and E. The critical temperature is then associat
with the peak of this function. We estimate that th
method is accurate to about 5%, the error coming fr
both finite size effects and statistics. On the other ha
for first order transitions,TcsJ, Ed or JcsT , Ed is identified
with the midpoint between the values where the ord
parameter jumps in a hysteresis loop. We simply u
these jump values to assign the error, which is presuma
overestimated. More accurate estimates of the ph
boundaries are clearly possible, using longer runs
larger systems and more sophisticated techniques, s
as finite size scaling. However, high precision data
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not necessary for us to reach some conclusions about
nature of the phase transitions in our systems. In th
spirit, we discuss our findings and their implications.

In the equilibrium case, a gauge transformation relat
the J . 0 system to theJ , 0 one. Thus, the phase
diagram in theT-J plane is symmetric (Fig. 1). Note that,
in the limit of J ! `, the bilayer structure is irrelevant
and the system reduces to a singled  2 Ising model
with coupling 2J0. Our simulations certainly confirm
that TcsJ  610d is 2Tcs0d, within the errors. Given
the conservation law, the two ground states are differe
however. ForJ . 0 sJ , 0d, the system orders into an
S (FE) state, to minimize interface free energy. Thu
there is actually a line of first order transitions on th
J  0 axis, betweenT  0 and Tcs0d. In this sense,
the junction of the three lines is a bicritical point. Since
L , ` systems are unavoidable in a Monte Carlo stud
we must be aware of finite size effects and expect, e.g., t
first order transitions to occur at small,Os1yLd, positive
J values.

When the drive is turned on, the most prominent ne
features are (i) theloweringof the critical temperature for
large jJj and (ii) the shift of the bicritical point tohigher
values ofT and negativeJ. The loss of symmetry in the
phase diagram (Fig. 2) is not surprising, since the driv
violates Ising symmetry. On the other hand, given th
TcsEd is greater thanTcs0d in the single-layer case, it is
quite unexpected thatTcsjJj ¿ 1, E ¿ 1d is smallerthan
its equilibrium counterpart.

Perhaps most unexpected is the presence of a fin
triangular region (inset, Fig. 2) in the phase diagram,
which an S phase is stable even fornegative, albeit small,
J. Since similar spins lie on top of each other here, suc
a phase could not exist if either energy or entropy we
to play dominant roles in determining the steady state.

FIG. 1. Phase diagram for an equilibrium bilayer lattice gas
half filling. The disordered (D), strip (S), and full-empty (FE)
phases are labeled. The D-S and D-FE transitions, denoted
s, are second order; while the S-FE transitions, shown byd,
are first order. The three lines join at a bicritical point.
515
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FIG. 2. Phase diagram for a bilayer lattice gas at half fillin
driven with E  25J0. The symbols and the scale used are t
same as in Fig. 1. Inset: Magnified view of the region near
bicritical point showing the presence of the S phase inJ , 0
half plane.

is thus natural to ask whether its presence might sim
be a finite size effect. To provide a partial answer, w
carried out simulations usingL  12, 16, 24, 30, and100,
with J  20.1, E  25, and T [ f1.00, 1.20g. In all
cases, the S phase prevailed. Deferring details to a l
publication [11], we conjecture that this region exists ev
in the thermodynamic limit.

In order to develop a simple intuitive picture for thes
phenomena, let us review the arguments which attemp
“predict” the field dependence ofTc in the driven single-
layer case. To provide a wider context, we begin w
highlighting the differences between the driven syste
and an equilibrium Ising model, exhibited inGs $xd, the
two-point correlations. Even in the disordered pha
both the small and largej $xj behaviors are affected by
the drive. First, thenearest neighborcorrelations of the
driven system are somewhat suppressed [12], consis
with the picture that the drive acts as an extra no
in breaking bonds, so that the effective strength of
nearest neighbor coupling is reduced. This observa
alone would lead to adecreasingTcsEd. However,
these properties stand in stark contrast to the largej $xj

behavior, whereG falls off as1yj $xjd, with an amplitude
that depends on the angleu between$x and the direction
of the drive [13]. Specifically, the amplitude chang
sign asu increases from0 to py2, such that correlations
parallel (transverse) toE are positive (negative). In eithe
case, themagnitudeof G is greatly enhanced over it
exponentially decaying counterpart in equilibrium. Th
enhanced negative correlations at large transverse$x are
expected to help “push” the particles together into
strip aligned with the drive. The positive longitudina
correlations should also promote this ordering proce
so that one would expectTcsEd to be greater than
Tcs0d. Clearly, the effects of the short- and long-ran
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parts of the transverse correlation function compete w
one another, shedding some light on the origin of th
contradictory expectations concerning theE dependence
of TcsEd. To predict which is the dominant effect will
be difficult, of course. In the prototype model,TcsEd
is observed to increase withE in both d  2 and 3,
indicating that the long-range effects “win.” However
the two cases differ in a subtle way. Ind  3, there is
an additional competition among the negative long-rang
correlations, since there aretwo transverse directions here
Long-range order (i.e., positive correlations) must devel
in oneof these directions asTc is approached. Thus, we
might expect a less significant rise inTcsEd in d  3.
Intriguingly, this is indeed the case:TcsEd saturates at
only 7% higher than the equilibriumTcs0d [14].

Turning to the bilayer case, we need to take into a
count the effect of cross-layer correlations onTcsJ, Ed.
Focusing onJ  0, where there are no additional short
range effects, we are led toTcs0, EdyTcs0, 0d . 1. In-
deed, this ratio is comparable to that in the single-lay
case. As for the lower transition, which is first order i
nature, we refrain from using these arguments, since
role played by long-range correlations in a first order tra
sition is unclear. Instead, we will return to examine th
transition in the context of a larger perspective.

Next, we consider the effect of having a positiv
J. Without the drive,TcsJ, 0d is, of course, enhanced
over Tcs0, 0d. With E fi 0, TcsJ, EdyTcsJ, 0d is again
determined by the competition of the short- and lon
range properties of the transverse correlations. Eviden
for small J, the long-range part still dominates, so tha
this ratio is greater than unity. At the other extreme,
J ¿ J0, the presence ofE effectively lowersJ, according
to our argument thatE acts as an extra noise which
breaks even very strong nearest neighbor bonds. A low
effective J naturally leads to a lowerTc. Thus, we
would “predict” that TcsJ, EdyTcsJ, 0d could decrease
considerably asJ increases. In fact, the simulations
show that this ratio dropsbelow unity for J $ 5. The
interplay of the competing effects is so subtle that eith
can dominate, in different regions of the phase diagram

Next, for largeJ , 0, we expect strong negative cor
relations across the layers, so that the system orders
the FE phase in equilibrium. That the low temperatu
phase of the driven system is also FE indicates an order
process dominated byJ. However, under the drive,both
the short- and long-range parts of the correlations te
to suppress the FE phase: the former effectively loweri
jJj, the latter favoring an S phase. Thus, the critical tem
perature should be lower than its equilibrium counterpa
Further, in contrast to theJ . 0 case, the two effects co-
operate rather than compete, so that theJ , 0 branch of
TcsJ, Ed is significantly lower than theJ . 0 branch (see
Fig. 2). We should add that a reasonable expectation
two driven layers withJ , 0 would be a phase with strips
in each layer, butstaggered. The absence of such a stat
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may be due to energetics. The transverse long-range a
correlations presumably also act across layers, so that
price of interfaces is not compensated for by the syste
having staggered strips instead of being in an FE state.

Finally, the presence of the S phase, in the triangu
regionJ # 0 (inset, Fig. 2), can also be understood qua
tatively. Since long-range negative correlations transve
to E supposedly dominate the ordering process forJ $ 0,
it is not too surprising that this mechanism continues
be effective for a small region of negativeJ. As a con-
sequence, the bicritical point together with its trailing firs
order line are “driven” to theJ , 0 half plane. Evidently,
however, the relative importance ofE andJ is easily re-
versed, so that the system orders into the FE pattern iJ
is sufficiently negative. Similarly, for low temperatures a
J  0, energetics appear to outweigh the nonequilibrium
induced effects so that the FE phase prevails here a
At present, it is unclear if, like the equilibrium case, finit
size effects account for the presence of the FE phase
smallJ . 0 region.

To conclude, our study of aninteractingbilayer driven
lattice gas provides new insight into the nature of orderin
in driven systems. It is a nontrivial extension of
previous investigation [7] which used only decouple
layers and simply reported the existence of two transitio
into two different ordered states. We have shown th
in an extendedT -E-J phase space, these two state
are generically present and, in equilibrium cases, c
be easily understood. When driven, the negative lon
range correlation favors the strip phase so that, for sm
jJj, the region associated with this phase is larger th
in equilibrium. On the other hand, forjJj ¿ J0, the
decorrelating effects of the drive on the nearest neighb
are so disruptive that, compared to the equilibrium mod
Tc is lower. The overall result is a shift of the bicritica
point, and a portion of its associated first order line,
the J , 0 region. Thus, the two phase transitions foun
in the J  0 case [7] are placed into a comprehensib
context. The behavior of the second order transitio
temperature, as a function ofJ and E, is determined
by a subtle interplay of the competing short- and lon
range components of the transverse correlation functi
Work is in progress to test this hypothesis further, b
studying a single-layer driven lattice gas with anisotrop
interactions. Our prediction is thatTcsEd will be higher
(lower) if the drive is aligned with the stronger (weaker
bonds.

On the analytic front, we have formulated continuum
field theoretic approaches, for both the equilibrium an
the driven cases [4]. In the former case, we obtain
[11] the (mean-field) critical temperatureT MF
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c s0d is found to be2. The actualTcsJd is
modified by fluctuations, of course. With this startin
point, we hope to find theadditional effect due to the
drive, at least qualitatively, as another way to confirm t
intuitive picture presented above. Since these approac
are best suited for the study of universal propertie
our goal is to compute various quantities at, e.g., t
bicritical point, and to make quantitative comparison
with extensive finite size scaling Monte Carlo studies.
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