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I. Introduction and overview: The distribution of structures among the main
semiconductor families

It is a fortunate fact that, among the most important families of semiconductor
materials, a dominant role is played by a very small number of very simple and highly
symmetric crystal structures. It might be argued that the overwhelming importance of
silicon technology in the electronics industry could justify devoting nearly all of this
chapter to a discussion of the diamond structure alone. That structure is illustrated in
fig. 1,1n a view through a large “ball-and-stick” model which forcefully brings home a
sense of the long-range order (Pauling and Hayward 1964). A more conventional

Fig. 1. Model of the diamond structure, viewed approximately along a (1, 1, 0) direction (adapted from a
drawing in (Pauling and Hayward 1964)).
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4 Richard Zallen

Fig. 2. The cubic unit cell of diamond.

diagram, showing a cubic unit cell, is shown in fig. 2. From a topological viewpoint, the
diamond structure (with the atoms as “vertices” and the covalent bonds as “edges” of
the topological “graph”) is the simplest example of a uniform four-connected three-
dimensional network (Wells 1977). Geometrically, with all bond lengths equal and with
regular tetrahedral bond angles at the vertices, the diamond structure is also the most
symmetric embodiment of the simplest 4-connected 3d network. Nature’s reputed
preference for simplicity is certainly not contradicted by the structure characteristic of
the group IV solids: C, Si, Ge, and «-Sn.

Tetrahedral coordination is a hallmark of covalent semiconductors having eight
valence electrons per pair of atoms. In addition to the elemental semiconductors of
group IV (e.g. Si), this includes the A"B#" families of binary compounds of types III-V
(e.g. GaAs), II-VI (e.g. CdTe),and I-VII (e.g. Agl). Figure 3 displays the portion of the
periodic table which contains the great majority of the elements which constitute the
chemical components of semiconductor materials. Superimposed on the table are
connections indicating examples of the binary families of compound semiconductors
mentioned above. Closely related to the tetrahedrally-coordinated AB binaries are a
host of more complex binaries (e.g. ZnP,), ternaries (e.g. CulnSe,), and quaternaries
(e.g. Cu,ZnGeS,) which share the property of having the average number of valence
electrons per atom equal to four. These complex tetrahedral structures, all of which can
be regarded to be derived from the diamond structure, will not be discussed here; a
systematic treatment has been given by Parthé (1964).

Figure 3 displays several “maps” which provide a graphic and compact represen-
tation of the distribution of crystal-structure types among the main families of
semiconductors: the group IV elements and the AB compounds of types IIT-V, II-VI,
I-VI1, and IV-VI. The diatomic analog of the diamond structure (D) is the zincblende
structure (Z) which 1s also cubic, though its symmetry is of course lower than that of
diamond. Zincblende is the dominant structure type for the A"B®” binaries, especially
for the III-V compounds. Among the tetrahedrally-coordinated (z = 4) members of
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Fig. 3. The distribution of structures among the main semiconductor families. A typical representative of

each family is indicated on the section of the periodic table shown at the top left. On the maps representing the

distribution of structure types, solid boundaries separate structures with different coordinations while

dashed boundaries separate structures with similar coordinations. The structure code is: D, diamond; Z,

zincblende; W, wurtzite; NaCl, rocksalt; Cinn., cinnabar; and G, graphite-or graphite-like. Other aspects are
discussed in the text.

the II-VI and I-VII families, zincblende shares the field with the closely-related
hexagonal-symmetry wurtzite structure (W). Octahedral coordination (z = 6) makes its
appearance in the I-VII family in the form of the rocksalt structure (denoted in the
figure by NaCl), and this structure also characterizes the lead-salt members of the
IV-VI family, which has been included in fig. 3 as an important group of non-
tetrahedral semiconductors. In all, about fifty chemically-distinct materials are
included in fig. 3, and recognizing that different structures constitute physically-distinct
solids substantially increases the number of materials represented. ,

Within the distribution maps of fig. 3, a solid line denotes a boundary between
structures having different primary coordinations, while a dashed line denotes a
boundary across which the primary coordination is unchanged. In some cases,
boundaries have been drawn which cut through the square corresponding to a given
substance. When this occurs, it means either that the material can exist at standard
temperature and pressure in either of the designated structures, or it can be converted
from one structure to the other by a mild departure from STP. If one structure is
strongly preferred at STP, this is indicated in a schematic way by the dominant crystal
form being given the lion’s share of the box corresponding to the compound. To
illustrate this, consider the case of the chalcogenides of mercury, which straddle the
boundary between the zincblende and cinnabar structures (the latter will be described
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in §3). HgS adopts the cinnabar structure at STP, but converts to zincblende above
300° C. HgSe and HgTe, on the other hand, have the zincblende form under normal
conditions, but convert to the cinnabar form at modest pressures (~ 10 kbar). Thus, the
zincblende/cinnabar boundary has been sketched to place most of the HgS square
within cinnabar “territory” and most of the HgSe and HgTe squares within zincblende
“territory”. Although the position of the boundary indicates, in a qualitative way, the
structural preference of the material, no quantitative interpretation should be placed
upon its detailed location.

In constructing the structure-distribution maps of fig. 3, as well as in the other
material collected in this review, several compilations of crystal-structure data have
been used as the principal sources (Parthe 1964, Wyckoff 1962, Roth 1967, Hulliger
1976). These have been supplemented, in some cases, by later references in the primary
literature. For example, the subtle situation found for SnTe has been sorted out only
recently (lizumi et al. 1975). This [V-VI semiconductor, along with GeTe, exhibits a
trigonal modification (corresponding to the strip labelled ¢ in fig. 3) which is an
extremely slight distortion of the rocksalt structure. To complete the structures found
in the IV-VI family, the area labelled “2d-net.” marks the occurrence of a layer-
structure (two-dimensional network (Zallen 1974, 1975)) crystal form (Hulliger 1976).

Four simple structures dominate the distributions of fig. 3: diamond, zincblende,
wurtzite, and rocksalt. Zincblende alone is exhibited by nearly thirty materials. This
chapter will concentrate mainly on these four structures, discussing them in some detail.
Not, however, to the exclusion of other less-common crystalline forms. Semiconduct-
ing solids are characterized by covalent bonding, and covalent bonding is accompanied
by low coordination numbers. Open structures and low filling factors result. This
allows for a great deal of freedom in building up the crystal structure, in contrast to the
close-packed structures which occur for metallic and highly-ionic crystals. It is
important to convey an impression of the great diversity of forms available to
crystalline semiconductors, and one section of this chapter will be set aside for this
purpose.

Section 2 assembles information about the symmetry properties of the dominant
structures of fig. 3. A quick survey of a variety of other crystals, including chain-
structure and layer-structure semiconductors, is given in §3. In §4 we return to the
principal structures, especially zincblende and wurtzite, with a description of geometric
and topologic features, polytypism, lattice constants, and Brillouin zones. Section 5
contains a few examples of spectroscopic consequences of structure and symmetry.

2. Symmetry properties of the principal structures

The “principal structures” from the semiconductor viewpoint are diamond, zincblende,
wurtzite, and rocksalt. (In the venerable Strukturbericht notation, these are Al, B3, B4,
and B1, respectively.) The diamond structure has already been shown, and its diatomic
analog-zincblende— will be shown in §4. The other key tetrahedral structure, wurtzite,
is shown in fig. 4, and the familiar rocksalt structure is shown in fig. 5.

A large amount of information about symmetry (and some other) properties of these
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Fig. 4. The wurtzite structure.
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Fig. 5. The rocksalt structure.

structures is presented in table 1. This table also includes information about a few other
structures in order to set up a bridge to the following section. However, in the present
section we shall focus on the “big four”, discussing the information contained in the fi:st
four rows of table 1.

For each structure, the prototype listed in the second column of the table is a material
whose primary form at STP is the structure under consideration. The coordination
number is the number of nearest-neighbor atoms, the most important single parameter
characterizing the local bonding in the solid. Network dimensionality, listed in the
fourth column, is a crucial topological characterization of the network formed by the



Richard Zallen

Co~n'g/znn

S0 (o)t €100 Wy eI ON (@) 1'ed  [euosiy 9 3 (pelpr  (9)7 3 urey)
$E0 (*D) T oS jo Soreuw orworerp  "xey 78T oN (E@) 12'%¢ed feuosin g 9 (pUPE (@9 s8H Iegeuur)
- o-{Z/1=0%0%0"¢ 1esyo01
10 (*D) wg Wworeeee  (ooy) 091 "oN (*¢D) wey [euosin g z (pope  (©)9 915D peirolsi(g
T
0 ("0) wew 000 3 STZON (;0) wewyg dqud 8 4 pe 9 sad Es0Y
(8/¢ ~ ) a2a0ge 0}
0 ‘0 ‘0 ppe 28
0 (D) wg TUE/TE/T xey 9871 'oN (5D) swfeg  euoSexay 4! ¥ pe ¥ 9spD SUZIN M
000D
0 (°1) wgy 1§ jo Sofruw orwojerp 59} 917 "ON (3.1) wep g 21qno ¥Z z pe ¥ syeD spusiqoulyz
YT YT Y/
0 (FL) wgy 000 29} LTZ ON (;O) wepd JIqno k14 z P ¥ IS puourei(y
1—(%4/%)  Anowrwds suonsod so13 dnoid SSep dnoig 1[50 Aueuors uoneu  ady aInpPnng
Adonos g SIOY -1e] soeds orporrediry [BISAID) 10101} wixd  -uswp  -1pIcoy  -0101d
-Iue ay1 Jo 1ad  yIomIaN ’
Fuipuog BPIO . sSwWoly

SSIIUIE) 100NPUOOIWLS JuelIodun S0 pue 1so[dWIs 51 JO SALNSUWIWAS [B1SAI0 PUR SOINONIG
1 9oqeL



Crystal structures 9

atoms and their pairwise connections (the covalent bonds). It is the number of
dimensions in which the covalently connected network is indefinitely extendable, i.e. it
is the macroscopic dimensionality of the molecular (or macromolecular) covalently
bound unit (Zallen 1974). The four main structures are all 3d networks, but there are
other structures exhibited by semiconducting solids (some of which-are discussed in the
next section) which have lower network dimensionalities.

The next seven columns of table 1 specify the key characteristics of the crystal
symmetry. The notation and terminology adopted here follows that of the definitive
International Tables for X-ray Crystallography (Henry and Lonsdale 1976). Although
a few definitions will be given, and others will be evident from the context, it is
impractical to attempt a short course in crystallography in this chapter. The reader is
referred to the International Tables and to the texts by Buerger (1963) and Megaw
(1973). For group-theoretical methodology many good source works are available,
including the books by Jones (1960) and Lax (1974).

It is instructive to view the fifth and sixth columns of the table as measures,
respectively, of crystal complexity (atoms per primitive cell, the smallest unit from
which the crystal may be constructed via translation) and of crystal symmetry (order of
the factor group, the number of distinct generalized rotations which transform the
structure into itself ). The disparity between these columns reflects the degree to which
nature has been kind to us in the simplicity of the main structures. In each instance, the
primitive-cell size (2 for the cubic structures, 4 for wurtzite) is far outstripped by the size
of the factor group. For diamond and rocksalt the latter is 48, which is the maximum
value possible for a three-dimensional crystal. This happy situation greatly simplifies
theoretical analyses of these solids. In the following section, we will meet cases in which
the complexity/symmetry “ratio” is reversed, and life is less simple.

Three equivalent labels are tabulated for the crystal space group: the international
“short symbol”, the older but still widely-used Schoenflies symbol, and the number of
the space group in the systematic listing of the International Tables (Henry and
Lonsdale 1976). The Bravais lattice for the three cubic structures is face-centered cubic,
(defined in §4.1), and for wurtzite it is the hexagonal lattice. Coordinates of atomic
positions are given with respect to the cubic (nonprimitive) unit cell for diamond,
zincblende, and rocksalt, in units of the cube edge. Hexagonal coordinates of the
conventional type (Henry and Lonsdale 1976, Buerger 1963, Megaw 1973, Jones 1960)
are used for wurtzite (look ahead to fig. 16). Site symmetry, the point-group symmetry
about each atomic site, is given in the next-to-last column of the table in both
international and Schoenflies notations.

The last column of table 1, the bonding anisotropy defined as (r;/ry) — 1, does not
refer to a quantity determined by symmetry. It is essentially a geometric measure of a
force constant, or intramolecular/intermolecular interaction ratio relevant to a
molecular crystal, ie. a crystal characterized by the coexistence of strong
(intramolecular, typically covalent), and weak (intermolecular, typically van der Waals)
interatomic interactions. Here r, is the covalent bond length and r, is the closest
atom-atom separation between molecules. For a 3d-network solid, the bonding
anisotropy vanishes, but for molecular solids it provides a measure of the de-coupling
between the low-dimensionality networks. It differs from zero for the three structures
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described in the lower part of table 1, and these three introduce the discussion of
diversity which is given in the following section.

3. A spectrum of structures

Our point of departure for the foray into a sampling of other notable semiconductor
structures is the rocksalt structure of fig. 5, because several structures may be viewed as
- lesser or greater distortions of rocksalt. First, it should be remarked that a generous
definition of the term “semiconductor” is being employed in this chapter in order to
provide a broad perspective, and also in order to include a few prototypical structures in
this particular section. Although most of the materials included in the main families of
fig. 3 fall within a conventional semiconductor category (say, bandgap between 0 and
3 eV), note that even those predominantly semiconductor groups include insulators
and semimetals (e.g. the diamond and graphite forms of C, respectively). The
zincblende-structure mercury chalcogenides, as well as a-Sn, are zero-gap semicon-
ductors (Groves and Paul 1963, Lovett 1977).

We begin within the IV-VI family, examining the tellurides. PbTe, like the other lead
salts, has the rocksalt structure. For SnTe and GeTe, a new ferroelectric structure
appears (it is the form adopted by SnTe at low temperature and by GeTe at STP) which
1s a very slight trigonal distortion of rocksalt (Hulliger 1976, lizumi et al. 1975). The
GeTe structure can be derived from rocksalt by a small displacement of the Ge and Te
sublattices, with respect to each other, along a (1, 1, 1) direction. Symmetry properties
of this structure have been included in table 1. Note the entries 6(3) and 3d(2d) for its
coordination and network dimensionality, respectively. The sixfold coordination of
rocksalt has been replaced by a situation in which three neighbors are slightly closer and
three are slightly further away than originally. The appropriate view of GeTe, with
respect to network dimensionality, is to ignore the slight difference in nearest-neighbor
spacings, and to treat it as a 3d-network solid of coordination 6. If the difference were
taken seriously, then the quantities in parentheses would apply: coordination 3 and
network dimensionality 2d. The corresponding bonding anisotropy is about 0.1 at
room temperature; it varies smoothly to zero at the second-order trigonal — cubic
displacive transition to the rocksalt form.

The cinnabar form of the mercury salts HgS, HgSe and HgTe can also be derived
from rocksalt by a trigonal distortion, but a more severe one than for GeTe. Cinnabar is
described in table 1 and its unit cell is illustrated in fig. 6a. The strong bonds define a
—-S-Hg-S-Hg- helical chain, a 1d network. Figure 6b shows a planar projection which
indicates the distorted-rocksalt aspect (Zallen et al. 1970); nearest-neighbor covalent
bonds (ry) are denoted by heavy lines, second-neighbor “interchain” bonds (r,) are
denoted by light lines. Although the bonding anisotropy is now quite substantial, the
appreciable ionic contribution to the interchain bonding in HgS causes this crystal to
more-closely resemble a 3d-network solid than a 1d-network solid (Zallen et al. 1970).

If one envisages cinnabar with the Hg atoms removed and the sulfurs replaced by Se
atoms, then the result is essentially that of trigonal Se (fig. 7), a very simple and
important structure which is the last one listed and described in table 1. This is the
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al. 1970).
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Fig. 7. The primitive cell of the structure of trigonal Se.

primary form of the two group VI semiconductors Se and Te. Just as cinnabar may be
derived by a trigonal distortion of rocksalt, so it is possible to derive the selenium
structure via a large trigonal distortion of the simple cubic structure. (Metallic
polonium, the group VI element in the row below Te, actually crystallizes in a simple
cubic form.)

Se and Te are the simplest polymers. These elemental crystals are essentially 1d-
network solids made up of helical chains in hexagonal array (close packing for rods).
Within each helix there are three atoms per turn. From table 1 it can be seen that the
bonding anisotropy is greater than for HgS, and in Se the interchain coupling lacks an
ionic component and is essentially of the weak van der Waals type. Thus this crystal
may appropriately be viewed as a 1d-network solid, a molecular solid made up of long-
chain macromolecules.
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Se and Te are notable as the simplest elemental crystals to display reststrahlen bands,
L.e., to possess lattice vibrations which are infrared active in first order. This aspect, in
which they differ greatly from the elemental semiconductors of the germanium family,
is explained in the last section of the chapter. It should also be noted that because they
are based on helical sub-units, all of which have the same “handedness,” both right-
handed and left-handed crystal forms exist. Table 1 describes (and fig. 7 shows) the
right-handed form; the enantiomorphic left-handed form has space group P3,21 (D$).
This also applies to the cinnabar structure. The three-atom unit cell of Se and Te is the
minimum needed to define a helix, and these two crystals are the simplest ones to
exhibit circular dichroism and optical activity.

We now proceed to less simple structures, surveying these by way of the crystals
characterized in table 2. This table differs from the first in two respects:

(1) atomic positions and site symmetries are omitted;

(2) asecond symmetry (in addition to the crystal symmetry) is specified, which refers

to a single molecular or macromolecular unit.
The first change is necessitated by the large unit cells of most of these structures. Site
symmetries are typically low; in the second half of table 2, no atom is taken into itself by
any operation (other than the identity) of the crystal factor group.

Change (2) is the significant one. The appearance of a second distinct symmetry,
which coexists and competes with the crystal symmetry, is characteristic of crystals in
which the network dimensionality is 0, 1, or 2 (Zallen 1974, 1975). The symmetry of the
restricted-dimensionality covalent network is the generalization of molecular
symmetry, and in many cases it is the dominant symmetry in determining physical
properties (a spectroscopic example is given in § 5). Note that the molecular group is, in
general, not a subgroup or a supergroup of the crystal factor group. Comparing the
orders of the two groups, as given in the sixth and eleventh columns of table 2, reveals
that the molecular symmetry can be either higher (e.g. As,S,) or lower (e.g. Ga$S), or of
the same order (e.g. Pbl,) as the crystal symmetry.

Molecular crystals of the most familiar type are those in which the covalent network
is finite on an atomic scale, termed Od-network solids in our classification. These are
represented in table 2 by two chalcogenide crystals based on eight-atom molecules:
orthorhombic sulfur in which the molecule is an Sg ring, and realgar (Mullen and
Nowacki 1972) in which the molecule is an As,S, cage. The molecular symmetry
(tetragonal for these two examples) is a point-group symmetry for a Od-network crystal.

The simplest 1d-network crystal was already introduced in table 1. Trigonal Se is an
example of a case in which the molecular and crystal symmetries are essentially similar
in the sense that the crystal space group can be generated from the group of a single
chain (which is now a space group because it includes not only rotations but also pure
translations parallel to the chain) simply by the addition of translations perpendicular
to the chain. This can occur when the crystal primitive cell contains just a single
primitive cell of the chain, i.e., when the translational repeat units of crystal and chain
coincide. A similar situation can occur for 2d-network crystals when there is “one
molecule per unit cell” in the same sense —the crystal primitive cell contains the same
atomic configuration as the primitive cell of the extended layer. An example is the Pbl,
structure included in table 2. In the above, the primitive cell of the chain (layer) is
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defined as the smallest unit which suffices to generate the macromolecule by one-
dimensional (two-dimensional) translations.

Layer-structure (2d-network) semiconductors occur in great variety (Hulliger 1976),
and it is this class which is most representative of the diversity available to
semiconductor structures. For this reason, graphite, the archetype 2d-network solid,
has been included in table 2 (in spite of the fact that it is, of course, a semimetal).
Graphite is elemental, has the largest bonding anisotropy (i.e. is the most “layerlike”),
and has the highest symmetry available to a layer crystal. In a 2d-network crystal, the
molecular symmetry is a diperiodic space group, the symmetry applicable to a three-
dimensional object which has translational periodicity in two dimensions. There are 80
such diperiodic groups (DG), and their relationship to other more familiar groups
(such as the 230 crystallographic space groups) is schematically indicated in fig. 8.
Although the DG layer symmetry is not normally explicitly listed in the crystal-
structure report for a layer crystal, it may readily be derived for a given layer structure
with the aid of the systematic listing and description of the diperiodic groups given by
Wood (1964). The DG numbers used in table 2 follows Wood’s notation.

NUMBER OF SPACE  —»
SPACE GROUPS DIMENSIONALITY
| 2 3
OD 2 oo | OO
PERIODICITY

DIMENSIONALITY lp | 2 | 7 | oo
l, 2p 17 | 80%—

3p N 230

Fig. 8. The relationship of the 80 diperiodic groups to other types of space and point groups. The diperiodic
groups are essential to the understanding of the properties of 2d-network (layer-structure) semiconductors.

Of the 2d-network semiconductor structures described in table 2, two are illustrated
in figs. 9 and 10. The beautiful pattern shown in fig. 9 represents a view normal to one
layer in Pbl,*. This simple and symmetric 2d-network consists of an I-Pb-I three-
plane sandwich in which each lead atom is bonded to six iodines and each iodine to
three leads. Many transition-metal dichalcogenides, such as TaS,, crystallize in this
structure.

Figure 10 presents the structure of orpiment, crystalline As, S; (Mullen and Nowacki
1972, Zallen et al. 1971). Orpiment is notable as the layer crystal for which the crucial
role of the diperiodic symmetry was first appreciated and analyzed (Zallen et al. 1971).
The dominance of the layer symmetry (and, conversely, the minor subsidiary role of the
triperiodic crystal symmetry) in determining the optical properties of As, S, is briefly
described in § 5. Orpiment, as well as the isomorphic crystal As, Se,, have also served as

* Thisis the crystal structure of 2H-Pbl,, the simplest (one layer per unit cell) and predominant polytype
of Pbl,. It is sometimes referred to as the cadmium iodide structure, and it is the same as the structure which
among the layered dichalcogenides is known as the 1T-Ta$, structure.
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As, S, As S

Fig. 10. Crystal structure of As, S; and As, Ses, the orpiment structure. The bottom diagram shows a view

along the c-axis, looking at the layers edge on; the top diagram shows a view along the b-axis, looking down

onasingle layer. Crystal-symmetry operations are indicated on the former, layer-symmetry operations on the
latter (Zallen et al. 1971).
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valuable crystalline analogs of the important chalcogenide glasses of the same chemical
composition and short-range order. (Amorphous As, S; and As, Se, are bulk glasses of
technological significance as infrared-transmitting window materials and as visible-
sensitive large-area photoconductors.)

For orpiment, both the crystal and the layer factor groups are of order 4, and the
small number of symmetry operations present have all been shown in fig. 10. The three
monoclinic crystal-symmetry operations are shown in the lower part of the figure (the
fourth operation is the identity). Two operations of the orthorhombic layer symmetry
are shown in the upper part of the figure (the other two are the identity and the glide
plane which the layer and crystal symmetries have in common). Notice how different
the two symmetries are: The crystal possesses a center of symmetry while an individual
layer does not; the layer possesses a mirror plane normal to the a-axis while the crystal
lacks this. These differences permit a clear test of the competition between the two
symmetries, since they imply experimentally distinguishable optical properties. The
data, as explained in §5, demonstrate the dominance of the layer symmetry. The
orthorhombic diperiodic space group applicable to the layer in orpiment, DG 32
(closely related, as described by Wood (1964), to the triperiodic group C3,), also applies
to two other structures listed in table 2.

To end this survey, we return, in the last entry of table 2, to a 3d-network crystal.
GeS, exhibits two crystalline forms. One of these is a layer structure which is
isomorphic to the GeSe, structure described in the next-to-last row of the table
(Dittmar and Schafer 1975, 1976a). The other is the 3d-network structure described in
the Jast row (Dittmar and Schafer 1976b). The complexity/symmetry balance for this
complex structure, 36 atoms per primitive cell versus a crystal factor group containing
merely 2 operations, is the reverse of that which we noted earlier for the cubic structures
of table 1. While for diamond and zincblende and, for that matter, for such simple and
relatively symmetric structures as Se and Pbl,, symmetry alone is sufficient to
determine the long-wavelength vibrational eigenvectors, group theory is of little help in
the analysis of a crystal such as GeS,. In this respect, the combination of high unit-cell
complexity and low crystal symmetry simulates the situation in an amorphous solid.
GeS, can, in fact, easily be prepared in solid form as a bulk glass.

4. Diamond, zincblende, wurtzite, and rocksalt
4.1. General properties

In this section we treat in more depth the four principal structures which dominate
fig. 3, focussing especially on the tetrahedral structures diamond, zincblende, and
wurtzite. The main structural and symmetry properties of the four have been described
previously in table 1.

The cubic structures of diamond and rocksalt have been shown in figs. 3 and 5; that of
zincblende is shown in fig. 11. (Sphalerite is another name sometimes used for
zincblende.) All three share the same translational symmetry, which corresponds to the
face-centered cubic Bravais lattice of fig. 12 (Ziman 1963). The atomic positions given in
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Fig. 12. The face-centered cubic lattice showing the cubic unit cell, the parallelepiped primitive cell of the
Bravais lattice (shown dashed), and the Wigner-Seitz primitive cell (Ziman 1963).

table 1 are in units of the edge of the unit cube of fig. 12. The base vectors of the fcc
translation group are given in the top of table 3, in which a denotes the cube edge.

The unit cube contains four translational repeat units, i.e. four primitive cells. Two
choices of primitive cell are shown in fig. 12: the usual parallelepiped unit cell (shown
dashed), and the rhombic dodecahedron (shown in solid outline) which is the
Wigner—Seitz cell of the fec lattice. Both contain two atoms, positioned as stated in
table 1. Comparing figs. 11 and 12 shows that either sublattice in the zincblende
structure (say, the Ga sublattice in GaAs) defines an fcc lattice. Rocksalt has the same
property.

Sections 4.2 and 4.3 are devoted to the tetrahedral structures: §4.2 describes their
local geometry and topology, and §4.3 deals with polytypism (structures “inter-
mediate” between zincblende and wurtzite). Section 4.4 collects a listing of lattice
constants of the semiconductors which crystallize in the four principal structures, and
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Table 3
Primitive translation vectors for the face-centered cubic translation group, base
vectors of the corresponding reciprocal lattice, and some special points of high
symmetry in the Brillouin zone (applicable to the diamond, zincblende, and rocksalt

structures).
Real-space a1 = (1, 1, 0)(a/2)
lattice = (1, 0, 1){a/2)
vectors = (0, 1, 1)(a/2)
Reciprocal-space = (1, 1, —=1)(2n/a)
lattice = (1, —1, )(2n/a)
vectors = (—~1,1, )(2n/a)
Symmetry points I (0,0, 0) multiplicity 1
in the X (1L, 0,02n/a) 3
Brillouin zone L (1/2,1/2,1/2)(2xn/a) 4
A (k, O, ) 6
A (k, k, k) 8
General point ko (ky, kg, ks) 48

§4.5 describes their Brillouin zones. To supplement the group-theoretical information
contained in this chapter, we call attention to the detailed treatment which has been
given by Birman (1974) for the cubic semiconductor structures.

4.2. Local geometry and topology

The tetrahedral coordination in diamond, zincblende, and wurtzite is evident in figs. 1,
2,4,and 11. The four nearest-neighbor bonds are equal, and each pair of bonds meet at
a bond angle of 109°. This tetrahedral environment is symmetry determined in
diamond and zincblende. In wurtzite, because it is hexagonal rather than cubic, one
bond is permitted to differ in length from the other three and the bond angles may
deviate from the tetrahedral value. However, the deviation from tetrahedral in wurtzite-
structure crystals is found to be very small (see §4.4). The site symmetries at the atomic
positions were given in table 1: tetrahedral (T,) in diamond and zincblende, trigonal
(C,,) 1In wurtzite,

The tetrahedral coordination is itself the single most important parameter of the
short-range order in these crystals. Beyond nearest neighbors, other topological and
geometric parameters may be specified to characterize the local order in these
structures, and several sets are presented in table 4.

The upper part of table 4 specifies the characteristics of the first few shells of atoms
surrounding any given atom in diamond, zincblende, and wurtzite. All neighbors within
a distance of 2.5 bond lengths have been included (34 neighbors in all for
diamond/zincblende, 38 for wurtzite). Zincblende and wurtzite have the same number
and type of second neighbors (12 of type A, where the origin is an atom of chemical
species A), just as they do for first neighbors (4 of type B). They differ for third
neighbors, and beyond. Note the close third neighbor in wurtzite; it is located along the
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Table 4
Local topology and geometry of the zincblende, diamond (same as zincblende, with A = B), and wurtzite
structures.
Number of
bond “steps” Distance Chemical Number of neighbors of the specified type
from the from the species
initial atom initial atom of the
(chemically (in units of neighboring
of type A) bond length) atom Zincblende Wurtzite
1 1.0 B 4 4
2 (8/3)'% =1.633 A 12 12
3 5/3 = 1.667 B 1
3 (11/3)*% = 1915 B 12 9
4 (16/3)1/* = 2.309 A 6 6
3 7/3 = 2.333 B 6
Fraction of bonds in the staggered configuration 1 3/4
Fraction of bonds in the eclipsed configuration 0 1/4
Fraction of six-atom rings in the chair configuration 1 1/4
Fraction of six-atom rings in the boar configuration 0 3/4
Number of 6-rings which pass through each atom 12 12
Number of 8-rings which pass through each atom 24 24

same trigonal axis that passes through the origin atom and is removed from it by a short
diameter of a “boat-shaped” six-atom ring (see below).

The next entry in table 4 describes the relative orientation of adjacent tetrahedra,
tetrahedra which share one bond. Figure 13 shows what is meant by the “eclipsed” and
“staggered” configurations. The angular variable at issue, which refers to the relative
disposition of second-neighbor bonds (rather than nearest-neighbor bonds, whose
relative orientation is given by the bond angle), is called the dihedral angle. This is the
angle which separates the two trios of bonds of adjacent tetrahedra, when they are

ECLIPSED STAGGERED

Fig. 13. The eclipsed and staggered bond configurations in tetrahedral semiconductors.
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projected upon the plane perpendicular to the shared bond. Only the staggered
configuration (dihedral angle of 60°) occurs in zincblende; in wurtzite, 3 of the bonds
arein the staggered configurationand } are in the eclipsed configuration (dihedral angle
of zero).

Topologically, an important characteristic of a network is the shortest circuit (closed
loop or n-ring consisting of n adjacent bonds, n connected sites) that it contains. In both
zincblende and wurtzite, the shortest circuit is n = 6. Every atom belongs to 12 distinct
6-atom rings. Geometrically, the 6-rings are of one type in zincblende, two types in
wurtzite, as stated in table 4. The “boat” and “chair” configurations are shown in fig. 14.

Fig. 14. The boat (a) and chair (b) configurations of six-atom rings.

It should be noted that in amorphous solids, symmetry characterizations disappear,
but short-range considerations (such as those given in table 4) continue to apply. The
structure of amorphous silicon is tetrahedrally coordinated and is characterized by a
continuous distribution of dihedral angles which spans all values between those
corresponding to the staggered and eclipsed configurations. While diamond and the
other tetrahedral crystal structures contain only even-membered rings, odd-membered
rings occur in amorphous silicon in which the shortest circuits are believed to be 5-rings.

4.3. Polytypism

The intimate connection between the zincblende and wurtzite structures has been noted
previously and is evident from table 4. As seen in fig. 3, many compounds in the I1I-VI
and I-VII families readily crystallize in both structures. In fact ZnS, as well as the [IV-1V
compound SiC, crystallize not only in both structures but also in a large number of
structures which are “in-between” the two.

The underlying geometrical basis for this phenomenon may be understood in terms
of a familiar problem phrased in terms of the large number of ways of optimally filling



Crystal structures 21

space with equal spheres. A first layer of spheres is arranged, with their centers coplanar,
in two-dimensional close packing (a triangular lattice, each sphere contacts six
neighbors along a horizontal equator). There are now two ways to lay down a second
like layer to nest on the first so that each sphere of the second layer touches three
spheres of the first. Label the horizontal position of the first layer as A, that chosen for
the second layer as B, and the unused second-layer position as C. (For a view of the
relative positions of the projections of layers A, B, C on a horizontal plane, note the
upper and lower iodine atoms and the lead atoms shown in fig. 9.) The third layer can
now be placed above the second at C or A. If C is used, the fourth can go at A or B, and
so on. There are always two choices for each additional layer, so that there exists an
unlimited variety of layer sequences which fill space equally well. In each case, every
sphere contacts 12 others: 6 in the same layer, 3 in the layer “below,” and 3 in the layer
“above.”

The layer sequence ABCABCABC . .. corresponds to cubic close packing; the
sphere centers form a fcc lattice with the vertical axis a (1, 1, 1) axis. The sequence
ABABABAB . .. corresponds to hexagonal close packing; the sphere centers form a
hep lattice with the c-axis vertical. Now if we examine, say, the Zn sublattice in
zincblende ZnS, we find the fec lattice, while the Zn sublattice in wurtzite ZnS forms the
hep lattice. Just as the zincblende and wurtzite structures can be constructed by adding
to each Zn sublattice a similar interpenetrating S sublattice that is suitably displaced
from it, so it is possible to similarly construct a tetrahedral network from any of the
infinite variety of sublattice sequences that are generated by sphere packings.

ZnS and, especially, SiC, exhibit dozens of such crystalline modifications. This kind
of polymorphism, in which the different structures differ only in the stacking
arrangement along one axis, is called polytypism. The many known polytypes of ZnS
and SiC have been reviewed in a monograph by Verma and Krishna (1966). All of these
are tetrahedrally coordinated 3d-network solids, and all can be regarded as in-
termediate between the cubic (zincblende) and hexagonal (wurtzite) end-member
forms. A layer in position B can be considered to be in a zincblende-like environment if
it is the middle layer in an ABC or CBA sandwich, and to be in a wurtzite-like
environment if it is in an ABA or CBC sandwhich. All polytypes can thus be assigned a
fractional zincblende/wurtzite value, and properties such as the electronic bandgap
scale smoothly with that quantity.

Polytypes with repeat units over 1000 A long, with hundreds of atomic layers
forming one repeat, have been documented for SiC. It should also be noted that
polytypism readily occurs in those layer crystals in which each layer “surface” is a close-
packed triangular array. This is the case for the Pbl, layer of fig. 9, in which each surface
1s a 2d close-packed array of iodines. Thus Pbl,, which crystallizes primarily in the
simple structure listed in table 2, also exhibits a variety of complex polytypes (Verma
and Krishna 1966).

4.4. Lartice constants

For the sake of the self-containment of this chapter, the structural parameters at STP
have been given in table 5 for all of the elemental and binary semiconductors which
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crystallize in the diamond, zincblende, and wurtzite forms (O’Keeffe and Hyde 1978).
Included for completeness are several structures (such as wurtzite-structure silicon,
which can be prepared as a thin film) which are atypical for the material at hand. The
typical structure (when one form is predominant) can be found by referring to fig. 3.

For a cubic material, a single quantity determines the structure, and for
diamond/zincblende the length-scale parameter given in table 5 is the edge a of the
cubic unit cell. The nearest-neighbor bond length is (3/16)!/? g = 0.433a. For wurtzite,
three parameters are needed to specify the structure: the a and ¢ dimensions of the
hexagonal unit cell, and the atom-position parameter u within the cell. In table 5, these
have been given in the form of the lattice constant a and the dimensionless parameters
c/a and u. For “ideal” wurtzite, in which the nearest-neighbor bonds define a perfect
tetrahedron about each atom, ¢/a equals the hcp value of (8/3)'2 = 1.6330 and u
equals 3/8. The observed values of table 5 are generally close to the ideal ones. Solv-
ing the geometry problem for the bond lengths in wurtzite yields the expression
{[1—Qu)~ 1%+ (3y*u*)~'} ~ 12 for the ratio of the length of the bond parallel to ¢ to
that of the other three (equal) bonds at each site. (Here y = c¢/a.) For the seven cases in
table 5 for which u has been determined, the bond parallel to ¢ is estimated to be 0-1 %
longer than the other three bonds (with the values closest to zero found for the most
accurately determined structures). Ignoring this small effect, the tetrahedral bond
length in each wurtzite semiconductor is, in terms of the hexagonal-cell lattice constant
listed in table 5, given by (3/8)!/?a = 0.612a.

The remaining main family of binary semiconductors are the IV-VI compounds. The
edge of the cubic unit cell for each of these rocksalt-structure materials is listed here
(given in A in the parentheses following each symbol); PbS (5.936); PbSe (6.124);
PbTe (6.454), SnSe (5.99); SnTe (6.327). (PbS, PbSe, PbTe data from Wyckoff (1962);
SnSe data from Hulliger (1976); SnTe data from lizumi et al. (1975).)

4.5. Brillouin zones

Reciprocal-space or k-space descriptions are essential to the theory of electronic and
vibrational states in crystals*. Since the three cubic structures of interest have the same
fce translational group, specified by the real-space lattice vectors a; of table 3, they also
share the same reciprocal lattice. The reciprocal-space lattice vectors b ; (defined by
a;*b; = 2nd,;) are included in table 3, as are the coordinates of special points of high
symmetry in the first Brillouin zone.

The form of the first Brillouin zone for the cubic semiconductors, which is the
k-space repository of the electronic energy bands and phonon dispersion curves of
these materials, is the truncated octahedron of fig. 15. The notation used for the
symmetry points and lines is the widely accepted one that dates from the classic 1936
paper of Bouckaert, Smoluchowski, and Wigner (1936). For wurtzite, both the real-
space and reciprocal-space lattices are hexagonal. The lattice vectors and the first
Brillouin zone are shown in fig. 16.

* Excellent reviews of Brillouin-zone usage have been given by Jones (1960) and Birman (1974) for
electronic states and vibrational states, respectively.
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Table 5
Unit-cell and atom-position parameters for the tetrahedrally-coordinated elemental and
binary semiconductors*.

Zincblende** Wurtzite

ain A ain A cla u
C 3.567 2.52 1.635 oo
Si 5431 3.80 1.653 -
Ge 5657 - -
Sn 0.489 - -
SiC 4.359 3.079 "1.641 0.376
BN 3.615 2.55 1.647 -
AIN - 3.110 1.601 0.382
GaN 3.190 1.627 0.377
InN - 3.533 1.611 -
BP 4538 3.562 1.656 -
AlP 5.467 - - -
GaP 5.447 - - -
InP 5.869 -
BAs 4777 - - -
AlAs 5.639 - -
GaAs 5.654 - - -
InAs 6.058 4.274 1.638 -
AlSb 6.136 - -
GaShb 6.095 - - -
InSb 6.479 - -
Zn0O - 3.253 1.603 0.382
ZnS 5.406 3.811 1.636 -
CdS 5.835 4.137 1.623 0.378
HgS 5.872 - - -
ZnSe 5.669 4.003 1.634 -
CdSe 6.05 4.30 1.631 0.377
HgSe 6.085 - - -
ZnTe 6.103 4.310 1.645 -
CdTe 6.478 4.572 1.637
HgTe 0.460 - -
Cudl 5416 3.91 1.642 -
CuBr 5.691 4.06 1.640 -
Cul 6.055 4.31 1.645 -
Agl 6.486 4.592 1.635 0.375

* O’Keeffe and Hyde (1978), except for the parameters of wurtzite SiC, AIN, GaN, and
Zn0, which are taken from: H. Schulz and K. H. Thiemann, Solid State Commun. 23, 815
(1977) and 32, 783 {1979).

** Diamond for the elements.
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Fig. 15. The first Brillouin zone for the cubic semiconductors (diamond, zincblende, rocksalt), showing the
symmetry points and axes (Jones 1960, Bouckaert et al. 1936).

Y

e =3

Fig. 16. The first Brillouin zone for wurtzite-structure semiconductors, showing the symmetry points and
axes. On the right are shown the primitive vectors perpendicular to ¢ for the real and reciprocal lattice of a
hexagonal structure (Jones 1960).

5. Some spectroscopic consequences of structure

The connection between symmetry and structure on the one hand and physical
properties on the other forms an important branch of crystal physics. Good reviews are
available (Jagodzinski 1955), especially on the cubic semiconductors (Jones 1960,
Birman 1974, Lax 1974), and the subject is too large to do more than touch upon it here.
However the groundwork has been prepared, in the previous structural descriptions,
for the explanation of two qualitative spectroscopic properties which involve
vibrational excitations. A brief elucidation of these interesting effects will serve as a
bridge to the two succeeding chapters on lattice vibrations.
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In the diamond-structure elemental semiconductors, the zone-center optical
phonons are infrared-inactive. However, the reason that Ge and Si do not exhibit
allowed one-phonon infrared absorption (reststrahlen) is not, as is sometimes assumed,
because they are homopolar or non-ionic. Elemental crystals can possess a first-order
electric moment (dipole proportional to displacement, for an atom vibrating about its
equilibrium position) by the mechanism of displacement-induced charge redistri-
bution. This “dynamic charge” mechanism does lead to vibration-induced first-order
moments at the atomic sites for the k = 0 optical modes in Ge and Si, but the two
primitive-cell dipoles are required by symmetry to exactly cancel so that there is no net
moment (Lax 1974, Lax and Burstein 1955). Thus, the photon and phonon dispersion
curves near k = 0 in Ge are as shown on the right side of fig. 17; the horizontal phonon
branch does not interact with the photon branch.
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Fig. 17. Phonon and photon dispersion curves for Se and Ge. While there is no interaction in Ge, the two
excitations are strongly coupled (yielding “polaritons™) in Se (Zallen and Lucovsky 1976).

It has been shown that for elemental crystals with three or more atoms in the
primitive cell, infrared-active optical phonons must occur because cancellation can no
longer be enforced for all long-wavelength optical modes (Zallen 1968). The simplest
crystals known to satisfy this minimum-complexity condition for the occurrence of
reststrahlen in a non-ionic crystal are the group VI semiconductors Se and Te (Chen
and Zallen 1968), which have the three-atom primitive cell of fig. 7. These two crystals
do display quite distinct reststrahlen bands in the far infrared; the photon and phonon
branches are strongly coupled, as shown for Se on the left side of fig. 17 (Zallen and
Lucovsky 1976).
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The second structure/property relation has to do with the vibrational spectroscopy
of the layer-structure semiconductors discussed in § 3. The importance of the diperiodic
(layer) symmetry in such 2d-network crystals is saliently demonstrated by providing an
example of the dire consequences of ignoring it (Zallen 1974, 1975). This is
schematically illustrated in fig. 18 for the case of the As, S, structure of fig. 10.

Crystal Raman I l 1 l ‘ ‘ -
RGN B I N
A >

Observed  Roman K \{ -
Spectra R w >V

Fig. 18. Schematic line spectra for Raman- and infrared-active phonons in As, S, and As, Se,, as expected
from the crystal symmetry, the laver symmetry, and as observed (Zallen 1974, 1975, Zallen et al. 1971).

For zone-center optic-mode vibrations in this structure, the relationship between
Raman and infrared activity predicted by the crystal symmetry is the mutual exclusion
indicated in fig. 18a. This turns out to be qualitatively wrong, since the observed spectra
(Zallen et al. 1971) are (to a very close approximation) as shown in fig. 18b. These
coincidental Raman-infrared spectra are precisely what is predicted by the diperiodic
symmetry. Thus the layer symmetry explains observations which are uninterpretable
on the basis of the crystal symmetry alone. Because there are two layers per unit cell in
the orpiment structure, close scrutiny of the vibrational spectra of As,S; and As; Se;
crystals reveals very small but definite Raman-infrared splittings (fig. 18c). These small
Davydov splittings (Zallen et al. 1971) reflect the slight extent to which the layer
symmetry is broken by the effects of the weak interactions between the layers.
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