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The goal of this effort is to establish the conditions and limits under which the Huygens–Fresnel principle
accurately describes diffraction in the Monte Carlo ray-trace (MCRT) environment. This goal is achieved by
systematic intercomparison of dedicated experimental, theoretical, and numerical results. We evaluate the success
of the Huygens–Fresnel principle by predicting and carefully measuring the diffraction fringes produced by both
single slit and circular apertures. We then compare the results from the analytical and numerical approaches with
each other and with dedicated experimental results. We conclude that use of the MCRT method to accurately
describe diffraction requires that careful attention be paid to the interplay among the number of aperture points,
the number of rays traced per aperture point, and the number of bins on the screen. This conclusion is supported
by standard statistical analysis, including the adjusted coefficient of determination, R2

adj, the rms deviation, and
the reduced chi-square statistic, χ 2v . © 2018 Optical Society of America

OCIS codes: (050.1940) Diffraction; (260.0260) Physical optics; (050.1755) Computational electromagnetic methods.
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1. INTRODUCTION

The Monte Carlo ray-trace (MCRT) method has long been
utilized to model the performance of optical systems in the ab-
sence of diffraction and polarization effects [1–10]. Heinisch
and Chou [11], and later Likeness [9], were among the early
proponents of treating diffraction in the MCRT environment.
However, their approach, which is based on a geometrical in-
terpretation of the Heisenberg uncertainty principle, relies on
empiricism to obtain adequate agreement with theory [12,13].
More recently, the Huygens–Fresnel principle [14] has been
implemented to describe diffraction and refraction effects in
the MCRT [15–18] and wavefront tracing [10] environments.
The goal of the current effort is to establish the conditions and
limits under which the Huygens–Fresnel principle accurately
describes diffraction in the MCRT environment. The method
can be applied in the whole range of electromagnetic wave in-
cluding the infrared region. This goal is achieved by systematic
intercomparison of dedicated experimental, theoretical, and
numerical results supported by statistical analysis.

2. APPROACH

We evaluate the success of the Huygens–Fresnel principle in
describing diffraction in the MCRT environment by compar-
ing predicted diffraction fringes with experimentally observed

fringes produced for various aperture-to-screen distances, for
both single slits and circular apertures. Predictions are based
on an analytical approach widely available in the literature and
on the MCRT method described here. We compare the results
from the analytical and numerical approaches with each other
and with the dedicated experimental results. Standard statistical
analysis is used to characterize differences observed among the
theoretical, numerical, and experimental results.

3. EXPERIMENTAL APPARATUS AND
PROCEDURE

Figure 1 is a schematic diagram of the apparatus used to obtain
the experimental results reported here. A 351 nm laser beam
produced by a Coherent Enterprise II 653 Argon Laser
System is steered through mirrors to a chopper. The chopper
is used to modulate the intensity of the laser beam. After that it
passes through a beam expander and a 4 mm × 4 mm beam
former before falling on the aperture. The beam expander con-
sists of two convex lenses whose focal lengths are 3.5 and
15 cm. The relatively large dimensions of the beam former en-
sure that the center of the beam does not contain a significant
amount of diffracted light. The aperture consists of either a
precision slit or a circular hole. The diffracted beam is incident
to a 2.0 μm pinhole mounted on the entrance aperture of a
Newport 918-UV photodetector. This pinhole determines

D56 Vol. 57, No. 18 / 20 June 2018 / Applied Optics Research Article

1559-128X/18/180D56-07 Journal © 2018 Optical Society of America

https://orcid.org/0000-0002-3071-1722
https://orcid.org/0000-0002-3071-1722
https://orcid.org/0000-0002-3071-1722
https://orcid.org/0000-0001-5413-9030
https://orcid.org/0000-0001-5413-9030
https://orcid.org/0000-0001-5413-9030
mailto:vinh@vt.edu
mailto:vinh@vt.edu
https://doi.org/10.1364/AO.57.000D56
https://crossmark.crossref.org/dialog/?doi=10.1364/AO.57.000D56&domain=pdf&date_stamp=2018-03-16


the spatial resolution of the fringe measurements. Low-noise
operation is assured by passing the detector output successively
through a preamplifier and a lock-in amplifier. The lock-in am-
plifier is used to improve the signal-to-noise ratio of the setup.
The shape and size of apertures and the aperture-to-pinhole
spacing, z, are parameters of the study.

Figure 2 shows an intensity profile, in arbitrary units, across
the center of the expanded and formed laser beam cross section
immediately in front of the aperture. The vertical dashed lines
indicate the maximum width of slits and apertures used. The
intensity of the laser beam shows an accuracy of better than
2.5%. This image shows that the beam profile incident to
the aperture is essentially flat to within the inherent noise level.
The diffraction effects clearly visible at the edges of the beam
former do not persist to the center of the beam.

4. ANALYTICAL DESCRIPTION OF
DIFFRACTION

The diffraction irradiation pattern depends on the distance
from an aperture to the observation screen. When the distance
between the aperture and the observation is smaller than a
wavelength, which is the near-field subwavelength region,
the irradiation pattern has a shape similar to that of the aper-
ture. When the irradiance pattern observed is at a very great
distance from the aperture (z > a2∕λ, where a is the size of
the aperture and λ is the wavelength), we obtain the far-field

pattern typical of Fraunhofer diffraction. The region in be-
tween the near-field subwavelength region and the far-field re-
gion is the Fresnel regime, or the near-field Fresnel region. We
employ here an analytical description of diffraction for near-
field Fresnel and the Fraunhofer diffraction.

Diffraction is considered to be in the Fresnel regime when
either the light source or the observing screen, or both, are suf-
ficiently near the aperture that the curvature of the wavefront
becomes significant. Thus, we are not dealing with plane waves.
Consider an aperture at z � 0 in the x 0, y 0 plane illuminated
with a monochromatic light of wavelength λ and producing a
field distribution, E0�x 0; y 0�, within the aperture, as illustrated
in Fig. 3. The field for the point P in the plane of observation
(x, y), parallel to the x 0, y 0 plane but at a distance z to the right,
is given by adding together spherical waves emitted from each
point in the aperture [14,19,20],

E�P� � 1

iλ

Z Z
Σ
E0�x 0; y 0�

exp�ikr�
r

cos ϑ dx 0dy 0: (1)

In Eq. (1), ϑ is an angle between a vector perpendicular to
the x, y plane and the vector ~r joining P and P 0; thus,
cos ϑ � z∕r. The distance between the points P and P 0 is
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Thus, we obtain the Fresnel approximation (near field),

E�x; y� � 1

iλz
eikz ei

kz
2z�x2�y2�

×
Z Z

Σ
E0�x 0; y 0�ei k2z�x 02�y 02�e−i

k
z�xx 0�yy 0�dx 0dy 0: (3)

When both the source and the observation point
are situated sufficiently far from the aperture (i.e.,
z ≫ k�x 02 � y 02�∕2), the factor ei

k
2z�x 02�y 02� can be dropped

from Eq. (3), yielding the Fraunhofer approximation (far field),
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Fig. 1. Schematic diagram of the experimental apparatus.

Fig. 2. Scan across the expanded and formed laser beam cross
section between the beam former and the aperture.
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Fig. 3. Transmission through an aperture.
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E�x; y� � 1

iλz
eikzei
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2z�x2�y2� ×

Z Z
Σ
E0�x 0; y 0�e−ikz�xx 0�yy 0�dx 0dy 0:

(4)

We employ the Fourier transform to find the solution for
both approximations.

5. MCRT DIFFRACTION MODEL

According to the Huygens–Fresnel principle, light propagates
as a succession of self-replicating wavefronts. At its origin, the
wavefront for a plane wave is considered to consist of an array of
equally spaced point disturbances, represented by the solid dots
in Fig. 4(a). Each point disturbance produces an outward-
propagating pattern of concentric spherical waves. Then, for
a given order of each spherical wavefront (t � Δt), a tangent
plane is passed parallel to the original plane wavefront, with
each point of tangency now considered to be a new point dis-
turbance. As pointed out by Volpe, Létourneau, and Zhao,
[10], “the construction should be regarded as a mathematical
abstraction that correctly reproduces the physics without
necessarily being physically rigorous.”

It is convenient to recognize the duality between rays and
waves in which the former are defined such that they are
mutually orthogonal with the latter at points of intersection.
The ray view of the Huygens–Fresnel principle is illustrated
in Fig. 4(b). In this view, each ray is considered to be an entity,
such as the one illustrated in Fig. 5; i.e., it originates at a speci-
fied point, travels in a specified direction, and carries an electric
field whose value varies periodically with position along its
length as determined by the wavelength of the light.

It is natural to identify the slit or circular aperture consid-
ered in this contribution as a plane source of rays of the type
illustrated in Figs. 4(b) and 5. According to the Huygens–
Fresnel principle, these rays will propagate from each source
point in the slit or circular aperture with a directional distribu-
tion influenced by an obliquity factor. In the MCRT view of
optics, source points randomly distributed in the plane of the
slit or circular aperture emit rays with a directional distribution
determined by an appropriate obliquity rule. Consistent with
the assumption of a monochromatic plane wave incident on
axis to the slit or aperture, all diffracted rays will be in phase.

Figure 6 illustrates equally well the geometry for both the
infinite slit and the circular aperture diffraction problems. We
consider a source point P 0 in the plane of the slit or circular

aperture and a field point P lying on the screen. Then, referring
to Fig. 6, the phase, ϕ, of the ray when it arrives at screen point
P will depend only on the wavelength λ of the light and the
length of the line connecting source point P 0 with field
point P; i.e.,

ϕ � 2π
z∕λ
cos ϑ

; (5)

where z is the horizontal distance between the slit or aperture
and the screen, and ϑ is the angle between the ray and the z
axis. The electric field strength of the ray at field point S 0 is then

E � E0eiϕ: (6)

Within an arbitrary constant, the intensity distribution on
the screen is given by

I�y 0� ∝ E�y 0� × E��y 0�; (7)

where E�y 0� is the local electric field due to all of the rays in-
cident to a given field point, and * denotes its complex con-
jugate. This calculation requires that the screen surface be
divided into bins because it is unlikely that two rays will be
incident at exactly the same point. Then the electric field
strength in bin n is the algebraic sum of the contributions
by the individual rays that are incident within the bin.

The validity of the Huygens principle illustrated in Fig. 4
may be questioned because of the presumed monopole nature
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Fig. 4. (a) Wave and (b) ray views of the Huygens–Fresnel principle
for a right-running wave.

Fig. 5. Anatomy of an individual ray.

Fig. 6. MCRT diffraction model.
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of the disturbances forming the wavefront at each time step. At
any instant, every point on the primary wavefront is envisioned
as a continuous emitter of spherical secondary wavelets. Each
wavelet radiates uniformly in all directions, in addition to gen-
erating an ongoing wave, thus, there would be also a reverse
wave traveling back toward the source. No such a wave is found
experimentally. Attempts to address this inconsistency when
using the Huygens principle as the basis for formulating diffrac-
tion by apertures have led to the concept of the obliquity factor.
The obliquity factor attributed to Kirchhoff has the form
K �ϑ� � �1� cos ϑ�∕2 at a given angle ϑ with respect to
the aperture normal, n. Spherical secondary wavelets with
weighted direction have been shown in the Fig. 6 [14]. This
has its maximum value, K �0� � 1, in the forward direction
and disperses with the back wave, K �π� � 0. Obliquity factors
have been used with varying degrees of success in analytical
treatments of diffraction; however, their possible role in MCRT
models has been largely ignored. The traditional role of the
obliquity factor is to properly model the variation of amplitude
with angle ϑ for each refracted wavelet [13]. Taking into ac-
count the Huygens–Fresnel principle and the obliquity factor
contribution, the optical rays are randomly generated and uni-
formly distributed in the single slit or the circular apertures. An
equivalent approach, arguably more convenient to use in the
MCRT environment, is to assign the same power to all re-
fracted wavelets but to adjust their angular density distribution
to account for obliquity. The random points are uniformly dis-
tributed in the single slit. For circular apertures, random points
are homogeneously distributed over a unit disk in the form

ϑ � sin−1
h ffiffiffiffiffiffi

Rϑ

p i
; (8)

and

φ � 2πRφ; (9)

where ϑ is the zenith angle measured from the aperture surface
normal, n, φ is the azimuth angle measured in the plane of the
aperture from an arbitrary reference and lies in the plane of the
aperture surface (Fig. 6), and Rϑ and Rφ are random numbers
whose values are uniformly distributed between zero and unity.
In the MCRT view of refraction, illustrated in Fig. 6, the re-
fraction event occurs when the rules of random points for single
slit and circular apertures are applied, where the rays abruptly
change directions. Following the Huygens–Fresnel principle,
each ray is divided into a number of rays, called refractions
per ray. The complex amplitude at the point P in Fig. 6 is found
by the superposition of waves or summing contributions from
each point on the sphere of the primary wavelets.

6. RESULTS AND DISCUSSION

We define the Fresnel number:

F ≡ a
ffiffiffiffiffiffiffiffiffiffi
2∕λz

p
; (10)

where a is the slit width or aperture diameter, and z is the dis-
tance from the aperture to the screen upon which fringes are
formed. Two fringe patterns produced by an aperture at the
same value of Fresnel number are known to be formally similar,
regardless of the values of a, λ, and z. By convention, if
F > 1.0, diffraction is considered to be in the Fresnel regime,

and if F < 1.0, diffraction is considered to be in the Fraunhofer
regime.

Figure 7 illustrates the fringe pattern predicted using the
MCRT method for the case of a 60 μm slit at a wavelength
of 2.4462 μm and a screen distance of 100 μm, corresponding
to a Fresnel number of 5.4253. Results are shown for three
values of the number of rays traced from randomly located po-
sitions y in the slit: 1000, 10,000, and 100,000. The results for
this case, which can be considered typical, verify that conver-
gence is assured when 20,000 refractions per ray are launched
from 20,000 randomly located points in the slit. A measure of
the accuracy of the results obtained can be assessed by observ-
ing the departure from symmetry of the results about the center
plane located at bin number 50.

Experience has shown that the MCRT results are also sen-
sitive to the number of bins into which the wavelets are
bundled on the screen. The pinhole aperture of the detector
in Fig. 1 has a diameter of 2 μm, and the experimental results
reported here are for slit widths and aperture diameters of 100
and 200 μm. Therefore, the MCRT bin size roughly corre-
sponds to the measurement spatial resolution.

The diffraction fringe patterns vary strongly by varying
the aperture-to-screen distance, z, from the near-field Fresnel
region to the Fraunhofer regime. Figures 8(a) through 8(f )
compare the diffraction fringe pattern profiles produced by a
slit-type aperture for six values of Fresnel number ranging from
0.80 to 10.18. In this series of images, we vary the Fresnel num-
ber by varying the aperture-to-screen distance z for a value of
slit width a � 200 μm and a fixed wavelength of λ � 351 nm.
The profiles are taken at the half-length of a slit whose length is
long compared to the slit width. The blue curves (bottom) are
experimental results collected from our optical setup. The red
curves (middle) are calculated using the Fresnel approach for
the near-field Fresnel regime and the Fraunhofer approxima-
tion for the far-field region. The green curves (top) are the
MCRT results described in the previous section. For this
simulation, we have used 20,000 refractions per ray that are
launched from 20,000 randomly located points in the 200 μm
single slit. The theoretically calculated curves from the Fresnel
approach as well as the Fraunhofer approximation are
remarkably similar to the observed diffraction patterns.

Fig. 7. Sensitivity of the MCRT-predicted fringe pattern to the
number of rays traced.
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The computation time for the MCRT method for the setup is
about 3 min. The time for Fresnel calculation using Fourier
transform is significantly shorter, around 1 min, with the same
computer hardware.

The MCRT method is a numerical analysis. The advantage
of the numerical method is that there is virtually no limit to
solving complex problems including geometrical symmetry,
but this method produces numerical errors. In the following
part, we provide a comparison between the MCRT method
and the analytical analysis based on the Fresnel/Fraunhofer ap-
proach with experimental results. The phase, ϕ, electric field, E,
as well as the intensity, I, of an optical ray at screen point P will
depend on the wavelength, λ, of the light, and the length of the
line connecting source point P 0 with field point P. Thus, we
extract the phase information, electrical field, and intensity
of refracted optical rays that launched from randomly located
points in the aperture slits using the MCRT method.

We have obtained the diffraction fringe patterns by chang-
ing the size of the single-slit aperture. Figures 9(a), 9(b), and
9(c) compare the diffraction fringe pattern profiles produced by
a slit-type aperture for three values of the Fresnel number

ranging from 4.03 to 6.01. In this series of images, the slit
width a � 100 μm and the wavelength λ � 351 nm.
Comparison of Fig. 8(b) with Fig. 9(a) and Fig. 8(c) with
Fig. 9(b) verifies the formal similarity of fringes corresponding
to the same (approximately in these cases) value of Fresnel
number. These experimental results (blue curves) are compared
with MCRT (green curves) and analytical (red curves)
simulations.

We have measured diffraction fringes produced by circular
apertures, and these results are compared with MCRT and ana-
lytical results (Figs. 10–12). The fringes in all three figures cor-
respond to normal illumination of the aperture by an expanded
351 nm laser beam. In Fig. 10, the aperture diameter is 100 μm
with a screen distance of 1.9 mm, in Fig. 11 the diameter is
200 μm with a screen distance of 7.6 mm, and in Fig. 12
the diameter is 400 μm with a screen distance of 30.4 mm. The
Fresnel number in all three figures is the same, F � 5.48;
therefore, we expect fringe patterns to have identical shapes
even though they cover different surface areas on the screen.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Comparison of MCRT, theoretical, and measured diffrac-
tion fringes produced by a 200 μm slit illuminated by a 351 nm laser
for a range of aperture-to-fringe distances.

(a) (b) (c)

Fig. 9. Comparison of MCRT, theoretical, and measured diffrac-
tion fringes produced by a 100 μm slit illuminated by a 351 nm laser
for a range of aperture-to-fringe distances.

Fig. 10. Diffraction fringes computed (a) using the MCRTmethod,
(b) using Fresnel theory, and (c) measured corresponding to normal
illumination of a 100 μm diameter circular aperture by a 351 nm laser
with a screen distance of z � 1.9 mm (F � 5.48).

Fig. 11. Diffraction fringes computed (a) using the MCRTmethod,
(b) using Fresnel theory, and (c) measured corresponding to normal
illumination of a 200 μm diameter circular aperture by a 351 nm laser
with a screen distance of z � 7.6 mm (F � 5.48).
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Intercomparison of the three figures reveals that the diffrac-
tion fringes are indeed formally similar even though the surface
area they cover on the screen increases with increasing screen
distance z, as expected. As a consequence of increasing surface
area with increasing screen distance, the spatial resolution of the
measured fringes increases going from Figs. 10 to 12. However,
the sampling of the MCRT-based images decreases as a fixed
number of rays traced is spread over a larger screen area. This
leads to an increasing “fuzziness” of the MCRT-based images
moving from Figs. 10 to 12. All three figures exhibit excellent
agreement among the MCRT-based, analytical, and measured
images.

A comparison between the experimental data and the theo-
retical models has been performed by a careful application of
standard statistical analysis including the adjusted coefficient of
determination, R2

adj, the rms deviation (RMSD), and the re-
duced chi-square statistic, χ2v . In statistics, the most common
measure is the coefficient of determination, R2, which gives
information about the goodness of fit of a model. The R2

coefficient of determination provides an estimation of how well
observed results are replicated by the model, based on the
proportion of total variation of theoretical values [21]:

R2 � 1 −
RSS

TSS
� 1 −

PN
i�0 �I expi − Imod

i �2PN
i�0 �I expi − Ī�2 ; (11)

where RSS is the residual sum of squares, TSS is the total sum
of squares, I expi is the ith observed value ofN observations, Imod

i
is the corresponding theoretical value, and Ī is mean of the ob-
served data. In general, the larger value of R2, the better the
agreement between experimental results and theoretical model.
In the linear context, this measure is very intuitive, as values
between 0 and 1 provide a ready interpretation of the degree
to which the variance in the data is explained by the theoretical
model. The value of R2 will always increase when a new inde-
pendent value is added. This is counter to the intuitive expect-
ation that a theoretical model with more independent variables
should provide a better fit. To compensate for the possible bias
due to a different number of parameters, we employ the
adjusted coefficient of determination, R2

adj:

R2
adj � 1 −

N − 1

N − p − 1
× �1 − R2�; (12)

where p is independent variables. R2
adj is always smaller than R2.

The independent variables are known parameters of our calcu-
lations, p � 6, including the slit width, the distance from the
aperture to the screen, the wavelength, the number aperture
points, the number of rays traced per aperture point, and
the number of bins on the screen. The value of p is much
smaller than the number of observations with N � 401.

Using R2 or adjusted R2
adj alone is not sufficient; it is also nec-

essary to diagnose regression results by a residual analysis. We
employ here the RMSD or the rms error to assess the
quality of a regression. The RMSD is a frequently used measure
of differences between values predicted by a model and observed
data. The RMSD provides an aggregation of magnitudes of er-
rors between predictions and observed values. Thus, the RMSD,

RMSD �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i�0 �I expi − Imod
i �2

N

s
; (13)

is ameasure of accuracy to compare forecasting errors of different
models for a particular data set and not between data sets.

The variance of a least-squares regression analysis is also
characterized by the chi-square statistic, χ2:

χ2 �
XN
i�0

�I expi − Imod
i �2

σ2i
; (14)

where σ2i is the uncertainty in individual measurements, I expi .
We further define the reduced chi-square, χ2v , as a useful
measure by

χ2v �
1

N − p

XN
i�0

�I expi − Imod
i �2

σ2i
; (15)

where v � N − p is the degrees of freedom. As a general rule, a
value of reduced chi-square, χ2v ≫ 1, indicates a poor agree-
ment between experimental results and the theoretical model.
If the theoretical model is a good approximation, then the var-
iances of both should be in good agreement, and the reduced
chi-square should be approximately unity, χ2v ∼ 1. If the re-
duced chi-square is too small, χ2v ≪ 1, it may indicate that
one has been too pessimistic about measurement errors.

We have performed least-squares regression analyses includ-
ing the adjusted coefficient of determination, R2

adj, the RMSD,
and the reduced chi-square statistic, χ2v , for the MCRT method
and the analytical approach to model diffraction irradiation pat-
terns with different distances from apertures to the observation.
Table 1 provides calculation of these parameters for different
values of Fresnel numbers and different sizes of single slits.
The values of the adjusted coefficient of determination, R2

adj,
are near unity. This indicates an excellent agreement between
observation and both the MCRT and Fresnel/Fraunhofer
models for the diffraction patterns.

The RMSD is very small for both models. These values also
indicate that the MCRT as well as analytical methods are ex-
cellent models for the diffraction patterns. The values of the
reduced chi-square, χ2v , are approximately unity. Therefore,
statistical analysis confirms the qualitative observation that
measured fringe data can be explained very well using both

Fig. 12. Diffraction fringes computed (a) using the MCRTmethod,
(b) using Fresnel theory, and (c) measured corresponding to normal
illumination of a 400 μm diameter circular aperture by a 351 nm laser
with a screen distance of z � 30.4 mm (F � 5.48).
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the MCRT method and the Fresnel/Fraunhofer approach. All
three statistical methods confirm excellent agreement among
the MCRT method, the standard analytical approach, and
measured diffraction patterns.

7. CONCLUSIONS

The obliquity rule based on dipole radiation from each diffrac-
tion site produces excellent agreement between the MCRT
diffraction model and corresponding experimental results
when care is taken to assure that the screen-binning precision
in the MCRT model matches the experimental measurement
precision.
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Table 1. Summary of a Comparison between MCRT
Simulation and the Fresnel/Fraunhofer Approach with
Experimental Results

Model R2
adj RMSD χ 2v

Single Slit (200 μm)

F � 0.80 MCRT 0.99820 4.09 × 10−4 1.28
Fraunhofer
approximation

0.99756 4.79 × 10−4 1.54

F � 3.75 MCRT 0.99611 2.51 × 10−4 0.48
Fresnel theory 0.98654 4.39 × 10−4 0.36

F � 4.95 MCRT 0.99531 3.01 × 10−4 0.46
Fresnel theory 0.99439 3.29 × 10−4 0.43

F � 5.48 MCRT 0.99278 3.66 × 10−4 1.88
Fresnel theory 0.99017 4.24 × 10−4 0.68

F � 6.11 MCRT 0.99019 4.29 × 10−4 1.91
Fresnel theory 0.98680 4.97 × 10−4 0.91

F � 10.18 MCRT 0.97186 7.72 × 10−4 1.96
Fresnel theory 0.98230 6.15 × 10−4 1.34

Single Slit (100 μm)

F � 4.03 MCRT 0.98549 4.28 × 10−4 0.62
Fresnel theory 0.99224 3.13 × 10−4 0.43

F � 5.37 MCRT 0.99472 2.56 × 10−4 1.05
Fresnel theory 0.99517 2.45 × 10−4 0.81

F � 6.01 MCRT 0.98708 4.09 × 10−4 1.62
Fresnel theory 0.98703 4.09 × 10−4 0.89
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