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ABSTRACT 

Surface bidirectionality must be considered when high accuracy is required of a radiative exchange model. 

Presented is an adaptation of the Monte Carlo ray-trace (MCRT) method for treating bidirectional 

reflections. Each incident ray is split into a family of reflected rays whose power and direction are 

determined based on a new four-component model for the bidirectional reflectance distribution function 

(BRDF) of Z302, an optical coating widely used in aerospace applications. The model is based on BRDF 

data available in the literature. We validate the model by using it to simulate the performance of a device for 

measuring the BRDF of a Z302 sample. We find that the difference between the original BRDF, upon which 

the bidirectional reflectivity model is based, and the BRDF recovered from the simulation depends on the 

physical resolution of the detector geometry and the number of rays traced. 

KEY WORDS: Radiation Heat Transfer, Monte Carlo Ray Trace Method, Bidirectional Reflection 

 

1. INTRODUCTION 

The directional distribution of reflected radiation is known to be strongly influenced by the topography, 

chemical properties, and degree of contamination of the surface. Therefore, it is unlikely that a wavelength-

dependent, bidirectional reflectivity model based entirely on theory could accurately represent the optical 

behavior of most surfaces of practical engineering interest. In cases where high accuracy is required, a 

successful surface optical model must be at least semi-empirical if not based entirely on measurements. 

 

 

 

 

 

 

 

Fig. 1 Beams of monochromatic light incident to and reflected from an area element dA. 

The monochromatic bidirectional reflectivity is defined
1 

ρλ
′′ 𝜆, θi, ϕi, θr, ϕr ≡

dIλ,r λ,θi,ϕi,θr,ϕr 

Iλ,i λ,θi,ϕi cosθidωi
 ,                                            (1) 

where Iλ is the monochromatic intensity, or radiance (W/m
2
∙sr∙μm), of the light in spectral interval Δλ 

surrounding wavelength λ, and the subscripts i and r are associated with the incident and reflected beams, 

respectively. The geometry is illustrated in Fig. 1. The monochromatic bidirectional reflectivity is often  
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referred to as the bidirectional reflectance distribution function, or BRDF. The BRDF is important because it 

includes all information needed to compute the other surface optical properties. 

The effort reported in this contribution is based on the conventional Monte-Carlo ray-trace (MCRT) 

method.
1
 While many previous contributions have reported efforts to model radiant interchange in enclosures 

whose walls exhibit bidirectional behavior, relatively few are particularly relevant to the effort reported here. 

Ono
2
 used a Monte Carlo approach to evaluate the nested integrals that arise from the analytical formulation 

of radiant exchange within a diffuse-specular enclosure, and Sapritsky and Prokhorov
3
 report use of a Monte 

Carlo algorithm to compute the effective emissivities of diffuse-specular cavities for use in radiometry. 

Ohwada
4
 assumed a relatively simple single-parameter model for non-Lambertian surface behavior and used 

numerical integration rather than the MCRT method to evaluate the nested integrals that arise in the 

formulation. An influential 1998 article by Prokhorov
5
 presents original MCRT algorithms and related 

software for predicting the absorption characteristics of cavity radiometers. Finally, a recent article by 

Prokhorov and Prokhorova
6
 provide the impetus for the current contribution. In the cited article the authors 

present a very useful dataset, reproduced in Fig. 2, representing the measured bidirectional reflectivity of a 

widely used optical coating, Z302.
7
 They derive a three-component BRDF model based on their original data 

and then use it in an MCRT model to predict the effective emissivity of a blackbody cavity intended for use 

in radiometric calibration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Empirical model fit (curves) to Prokhorov and Prokhorova
6
 data (symbols). 

2. DERIVATION OF A BRDF MODEL FOR Z302 

 
Aeroglaze® Z302 (Lord)

7
 is a polyurethane-based paint whose absorptivity typically exceeds 90 percent in 

the visible part of the spectrum, depending on the wavelength and coating thickness. It is unique in that the 

reflected component of radiation is mostly specular. Its special properties make it the coating of choice for 

many aerospace and optical applications where a surface must be an exceptionally efficient absorber, but 

where diffuse reflection is undesirable. A typical application is the interior surface of a blackbody cavity 

used as a calibration target. In this case the cavity geometry would be such that several specular reflections 

would occur before an incident ray could escape. In this case any diffuse component of reflectivity present 

would diminish the effectiveness of the design because it would allow some power to escape the cavity with 

each reflection. Such diffuse “leaks” can be significant when the effective emissivity of the cavity must be 

unity to better than three nines. 



Prokhorov and Prokhorova
6
 describe a three-component semi-empirical model based on their measurements, 

represented by the symbols in Fig. 2, of the BRDF of Z302 at a wavelength of λ = 10.6 μm. We have used 

the same data to derive a purely empirical four-component model, represented by the curves in the figure. 

Both the Prokhorov and Prokhorova model and our model appear to be in excellent agreement with the 

measurements. Our goal is to demonstrate that we can begin with a reasonably realistic BRDF model and 

eventually recover the original data upon which it is based by running a simulated BRDF measurement 

experiment. Therefore, we have not performed a formal goodness-of-fit analysis between the data and BRDF 

our model. Our four-component has the form 

BRDF = ρ1
′′ + ρ2

′′ + ρ3
′′ + ρ4

′′ ,                                                     (2) 

where 

ρn
′′ = An

1

√2𝜋σn
e− θv−θi 

2/2σn
2
+ On , n = 1, 2, 3, 4.                                      (3) 

In Eq. (3), θi and θv are the incidence and viewing angles shown in the inset in Fig. 2, and An, σn and On are 

empirical curve-fitting parameters. The form of Eq. (3) is recognizable as the normal distribution function 

multiplied by a scaling factor An and shifted in amplitude by an offset On. In practice the additive offsets for 

the four values of n are gathered into a single constant. The fit illustrated in Fig. 2 was obtained by defining 

the standard deviation 

σn = 
1

√2πbnθi
                                                                   (4) 

and the multiplicative constant 

An =
Bn

bnθi
  ,                                                                   (5) 

where the coefficients Bn and bn and the offset are given in Table 1. 

Table 1 Fitting parameter values for the model shown in Fig. 2. 

θi b1 B1 Offset b2 B2 b3 B3 b4 B4 

5 0.000250 0.005 0.0046 0.0100 0.01 0.0200 0.5 0.12 32.1 

30 0.000040 0.005 0.0046 0.0015 0.01 0.0035 0.5 0.02 40.8 

60 0.000015 0.005 0.0046 0.0016 0.01 0.0015 0.5 0.01 195 

 

We see that the coefficients B1, B2, B3 and the offset are constants, while the coefficients b1, b2, b3, b4, and B4 

are functions of the incidence angle, θi. The variations of these latter parameters with incidence angle are 

illustrated in Figs. 3 and 4, which include the corresponding fitting equations. The Prokhorov and 

Prokhorova data were lifted from Fig. 3 in Ref. 6 using an optical scanner and picking off values from the 

indicated cursor position. The accuracy thus obtained is deemed to be in keeping with the goals of the effort 

as stated above. 

The similarity of form among the fits for bn suggests that they are governed by a common physical principle. 

Note that the values for bn are unbounded at θi = 0.  Therefore, since values of θi approaching zero may occur 

in a practical ray-trace, it is necessary to artificially limit these parameters below a certain threshold value of 

θi. In the case at hand we use the rule that if θi < 1 deg, bn = bn(1 deg). The overall error introduced by this 

rule is negligible because of the relatively small number of incidences of θi < 1 deg, but especially because 

the value of the exponential in Eq. (3) rapidly approaches 1.0 as θi decreases below 1 deg. The fit for the 

variation of the coefficient B4 with incidence angle is given in Figure 4.6. The choice of a log-linear fitting 

function is justified because only three observations are available. A more elegant fitting function might 

produce a better fit but, using only three data points, such a fit would place too much weight on a single 

observation. Once again, this level of curve fitting accuracy is consistent with the goal of the effort, which is 

to derive a realistic BRDF model and then use it in the MCRT environment to recover the original data. The 

degree of success in accomplishing this goal, reported elsewhere in this contribution, tends to justify the 

decision. We do not claim that our four-component model represents the true bidirectional reflectivity of 



B4 = 22.0 e0.0334 θ
i 

Z302. However, it is probably true that our model would fall within the sample-to-sample variation observed 

in commercial applications, when variabilities in coating thickness and substrate morphology and 

preparation are taken into account. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Models for bn coefficients (symbols are values from Table 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Model for B4 coefficient (symbols are values from Table 1). 

We now have an analytical tool for characterizing the bidirectional reflectivity, or BRDF, of Z302 near 10.6 

μm. However, this model describes the surface optical behavior only for viewing angles in the plane of 

incidence. How do we predict the reflectivity at viewing angles out of the plane of incidence? Following 

Prokhorov and Prokhorova, we assume axisymmetry in the directional reflection pattern about the axis 

running from the point of reflection in the direction of the viewing zenith angle, θv. Subject to this 

reasonable assumption, the model represented by Eqs. (2) and (3) is valid for all viewing angles if θv ─ θi in 

Eq. (3) is replaced by γ, where 

γ = (180.0/π) cos
─1

[vr∙vv] (deg).                                                     (6) 

In Eq. (6) 

b1 = 0.0015 θi
─1.11 

b2 = 0.0618 θi
─1.118 

b3 = 0.107 θi
─1.029 

b4 = 0.60 θi
─1.0 



(a) (b)

(c) (d)

vr = (xr – x1) i + (yr – y1) j + (zr – z1) k                                               (7) 

and 

vv = (xv – x1) i + (yv – y1) j + (zv – z1) k ,                                            (8) 

where (x1, y1, z1) is the point on the surface where the ray is incident, (xr, yr, zr) is a point on the surface of a 

unit hemisphere intersected by a diffusely reflected ray, and (xv, yv, zv) is the point on the unit hemisphere 

intersected by a ray at the viewing angle θv, as illustrated in Fig. 5.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Geometry defining vr and vv in Eqs. (9) through (11). (θi and θv are both in the plane of incidence 

and the points (xv, yv, zv) and (xr, yr, zr) both lie in the surface of the unit hemisphere.) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Four views of the BRDF pattern produced by 100,000 rays incident at 45 deg: (a) isometric view, (b) 

logarithmic view (c) view normal to x-axis, (d) view normal to y-axis. 

Figure 6 represents four views of the same the BRDF distribution corresponding to 100,000 rays created by 

the splitting of a single ray incident at (x, y, z) = (0, 0, 0) at an angle of 45 deg according to the four-

component bidirectional reflectivity model. The illuminated sample lies in the x,y-plane. All rays carry the 

same power. 
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The various coefficients comprising the model presented here are of course particular to Z302 at 10.6 μm 

applied to the thickness of the coating studied by Prokhorov and Prokhorova. In general, the values of the 

model coefficients can be expected to vary with both wavelength and coating thickness. Prokhorov and 

Prokhorova report that the wavelength dependence of Z302 is rather weak in the interval surrounding 10.6 

μm, and they suggest that modeling parameters determined at this wavelength can probably be used across 

the 8-to-12-μm range with acceptable error. It is difficult to overstate the need for conducting a serious 

experimental campaign aimed at characterizing the optical behavior of the actual surface coatings to be used 

in an application requiring a high level of accuracy. 

3. APPLICATION OF BIDIRECTIONAL MODELS IN THE MCRT ENVIRONMENT 

Once the BRDF model has been created, the directional absorptivity may be determined as 

α′ θi = 1 − ρ′ θi  ,                                                            (9) 

where 

ρ′ θi = DHR =  ∫ ∫ ρ′′π/2

0

2π

0
 θi, θr, ϕr cosθrsinθrdθrdϕr                             (10) 

is the directional-hemispherical reflectivity (DHR). The integration implied by Eq. (10) is approximated in 

the MCRT environment as  

ρ′ θi  = (2π/M) ∑ ρ′′ θi, θr, ϕr M   ,                                              (11) 

where the sum is over the number M of reflected rays and 2π/M is the mean solid angle into which each ray 

is reflected. The careful reader might notice that the factor cosθr in Eq. (10) does not appear explicitly in Eq. 

(11) but rather is invoked implicitly in the definition of θr, given in Eq. (14), during summation.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 The variation of the directional-hemispherical reflectivity of Z302 at λ = 10.6 μm computed 

using Eq. (11) with the four-component model for 𝛒′′ 𝛉𝐢, 𝛉𝐫, 𝛟𝐫 . 

MCRT-based results for the variation with incidence angle of the directional-hemispherical reflectivity, Eq. 

(10), and the directional absorptivity, Eq. (9), are plotted in Figs. 7 and 8, respectively. Prokhorov and 

Prokhorova report a value of about 0.051 (read from Fig. 4 in Ref. 3) for the directional-hemispherical 

reflectivity of their sample for an incidence angle of 8 deg. This value is also plotted in Fig. 7, which shows 

the values of directional-hemispherical reflectivity obtained using the four-component model for 

As Reported 
by Prokhorov and 

Prokhorova [6] 

Z302 at 10.6 μm 

ρ(λ) 



ρ′′ θi, θr, ϕr . The agreement between the directly measured value at an incidence angle of 8 deg and the 

value obtained using the model—within three percent—is remarkably good considering that the two methods 

for determining ρ′ θi  are based on two different independent experiments, with data from one of them 

interpreted using a complex model. 

The horizontal dashed line in Fig. 7 is drawn at the level of the bi-hemispherical reflectivity ρ(λ) as estimated 

in the MCRT environment using 

ρ Δλ ≡
∫ Φr Δλ,θr,ϕr dΩr2πr

∫ Φi Δλ,θi,ϕi dΩi2πi

≈
∑ Pr,n Δλ,θr,ϕr /(2πR2)𝑛

𝜋𝐼 Δλ 
  ,                                     (12) 

where Φr Δλ, θr, ϕr  is the reflected flux (W/m
2
) in direction  θr, ϕr , and Φi Δλ, θi, ϕi  is the incident flux from 

direction  θi, ϕi . The summing index n in Eq. (12) refers to the number of detector positions required to effectively 

“cover” the hemispherical surface in which the detector is displaced. The accuracy of the estimate increases with the 

number of positions n = 2πR
2
/AD. In practice, ρ Δλ  is usually measured separately using an integrating sphere. 

Finally, the power absorbed in the surface element containing the point of incidence is 

Pa = Pi α(θi) .                                                                 (13) 

Two MCRT continuations are available:  

(1) Compare the value of α(θi) with a random number Rα. If α(θi) > Rα, the ray is absorbed, in which case a 

new ray is launched. Otherwise, the ray is reflected and continues at full strength, with the direction of 

reflection determined by a statistical process, described below, based on the bidirectional reflectivity model. 

(2) Reduce the power carried by the ray by an amount Pa and then compare its remaining power Pr = Pi ─ Pa 

with a threshold value. If, for example, Pr < Po × 10
─6

, where Po is the power carried by the ray before its first 

reflection, the ray is terminated and a new ray is launched. Otherwise, the ray continues onward at its 

reduced strength. 

The two schemes listed above both lead to the same overall result if a sufficiently large number of rays are 

traced. Before either of these two schemes can be implemented, we must first use Eqs. (9) and (10) to 

compute the directional absorptivity α(θi). This requires that a ray trace be performed in which a large 

number M of reflections are presumed to occur from the point of incidence. This step is necessary even if it 

is subsequently determined that no reflection occurs. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 The variation of the directional absorptivity of Z302 at λ = 10.6 μm computed using Eqs. (9) and (13) 

with the four-component model for ρ′′ θi, θr, ϕr . 

Z302 at 10.6 μm 



Referring to Fig. 5, a random direction vr is assigned to each of the M reflections in the usual manner for 

diffuse reflections. That is, 

θr = sin
─1

[√Rθ] and ϕr = 2πRϕ ,                                                    (14) 

where Rθ and Rϕ are random numbers whose values are uniformly distributed between zero and unity. Then 

xr = sinθrcosϕr, yr = sinθrsinϕr, and zr = cosθr, followed by application of Eq. (7). The direction vv is 

obtained using Eq. (8) with xv = sinθv, yv = 0 (since θv = θi and ϕv = 0), and zv = cosθv. The angle γ is then 

computed using Eq. (6), after which Eqs. (2) and (3) are used to compute the bidirectional reflectivity, 

ρ′′ θi, θr, ϕr . The directional-hemispherical reflectivity ρ′ θi  may now be computed using Eq. (11). 

Figure 7 reveals that the directional-hemispherical reflectivity approaches zero as the angle of incidence 

approaches 90 deg. This seems to contradict the trend for the BRDF shown in Fig. 2, which suggests an 

increase in directional-hemispherical reflectivity with incidence angle. However, this intuitive reasoning 

does not take into account the effect of the weight factor cosθr in Eq. (10) and the corresponding directional 

reflection distribution inherent in Eq. (14). Because the peak in BRDF always occurs at θr = θv = θi, this 

factor dominates the trend at large incidence angles. 

4. DEMONSTRATION OF THE METHOD 

The method may be briefly but effectively demonstrated by simulating the measurement of the BRDF of a 

coupon coated with Z302 using the apparatus illustrated schematically in Fig. 9. In the simulation, we 

illuminate the Z302-coated coupon with a collimated 2.0-mm diameter circular beam of power Ps incident at 

45-deg. The beam is composed of a bundle of N = 1000 randomly spaced parallel rays, each carrying a 

power of Pi = 10.0 mW. Upon incidence to the Z302-coated coupon, each ray is split into M = 100,000 

raylets which are reflected into the hemispherical space above their point of incidence. In the simulation we 

set the distance R in Fig. 4.3 to 100 mm to ensure that the detector lies in the far field of the intersection of 

the beam with the coupon. 

 

 

 

 

 

 

 

Fig. 9 Schematic representation of an apparatus for measuring the BRDF of a coupon. 

Figure 10 shows the simulated power measured by the detector as it is displaced at constant azimuth angle 

ϕd = 0 over a range of zenith angles 15 ≤ θd ≤ 75 deg. The power measured by the detector depends on the 

number of rays incident to it, which in turn depends on the solid angle subtended by the detector at the center 

of the illuminated spot on the coupon. Reference to Fig. 7 suggests that about 90 percent of the incident 

power, about 9 W in this case, is expected to be absorbed, while the remaining 1 W or so is reflected into the 

hemispherical space above the coupon. 

It now remains to convert the power distribution into BRDF. The power incident to the detector for a given 

incidence angle θi and corresponding solid angle Ωi due to N incident rays and M reflected rays per incident 

ray is 

Pd = 〈Id〉AdΩd ,                                                               (15) 

where 

 〈Id〉 =  Ii〈BRDFd〉 cosθi Ωi .                                                    (16) 

Ii Δλ  
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θr 
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In Eq. (16), Ii = Ps /AsΩs and 〈BRDFd〉 is the mean value of the BRDF corresponding to the detector location 

and effective area, 

〈BRDFd〉 ≡  
1

Md
∑ BRDFmdMd

 ,                                                 (17) 

where Md is the number of reflected rays collected by the detector. Recognizing that the apparatus has been 

fabricated so that AsΩs = AdΩd = AΩ, we combine Eqs. (15) and (16) to obtain 

〈BRDFd〉 =
Pd/Ps

Ωcosϑi
=

Pd/Ps

 πr/R 2cosϑi
 .                                              (18) 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Power measured by the detector using the apparatus of Fig. 9. 

With the introduction of numerical values from the current example into Eq. (18), we have 〈BRDFd〉 ≅ 450 

Pd. Thus, the peak value in Fig. 10, where Pd = 0.109 W, corresponds to a BRDF of 49 sr
─1

, which is 

approximately one-half the “true” value calculated directly using the four-component model. This apparent 

discrepancy may be attributed to several factors, but it is mainly due to the finite size of the detector, whose 

angular extent is 1.145 deg, and to the local rate of change of BRDF with detector zenith angle near 45 deg. 

The apparatus measures the mean value of BRDF over the effective detector area. Therefore, results obtained 

near the reflection peak significantly underestimate the real BRDF values. Other factors contributing to the 

low value of “measured” BRDF are the finite size of the illuminating beam, whose diameter is 2.0 mm, and 

the limited distance from the coupon to the detector, 100 mm. The inherent inaccuracy of the numerical 

model itself (N = 1000 incident rays and M = 100,000 reflected rays) must also be considered, although this 

can be minimized by increasing N and M until the results obtained are no longer sensitive to their values. 

When the source and detector diameters are decreased from 2.0 to 1.0 mm and the number of rays traced is 

increased from N = 1000 to N = 10,000, the value obtained by the simulation for BRDF at φd = 45 deg 

increases from 49 to 81 sr
─1

. 

Modeling the apparatus using the MCRT method permits a parametric study to be carried out to determine 

the optimum values of Ps, r and R. For example, inspection of Fig. 10 reveals that if a single detector is to be 

used at all reflection angles, it must have a dynamic range covering six orders of magnitude and a sensitivity 

extending down into the low microwatt range. Furthermore, increasing the source power to obtain a higher 

detector power at large incidence angles might produce intolerably high heat fluxes on the coupon. Similarly, 

decreasing the radius r to increase the accuracy of the BRDF measurement near the peak also increases the 

local heat flux on the sample. The MCRT method is clearly a tremendously valuable tool for experimental 

design and optimization. 

 



5. APPLICATION OF THE METHOD IN THE PRESENCE OF MULTIPLE 

REFLECTIONS 

In the previous example rays reflected from the coupon were “lost”; that is they either were completely 

absorbed by the detector or by the surroundings. This greatly simplifies the process. We now briefly consider 

the MCRT method when use to calculate the power of bidirectionally reflected rays within enclosures 

consisting of multiple surfaces. 

The following development is limited to implementation of continuation (2), described in the paragraph 

under Fig. 7, in which the power of the reflected ray is reduced with each reflection. For purposes of 

discussion let us assume that after three reflections the remaining ray power is below some predetermined 

threshold value, say one-tenth of a percent of the power of the original ray. This would probably be adequate 

for an enclosure whose surfaces were coated with Z302. We can easily extend the process to larger numbers 

of reflections by inductive reasoning. 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Three-bounce life cycle of the i
th
 ray entering an enclosure made up of bidirectionally reflecting 

surfaces. 

Referring to Fig. 11, in the case of three reflections, each ray has four indices (i, j, k, m). The index i 

indicates the i
th
 of I rays entering the enclosure. The i

th
 ray is reflected at a first bidirectional surface. This ray 

produces a maximum number of reflected rays, J, with each ray j carrying a power calculated from the 

BRDF model. Next, a ray which is reflected from the first surface will arrive at a second bidirectional 

surface. Upon reflection, this ray produces K rays with their indices k and power calculated from the BRDF 

model. We continue the MCRT method with a third bidirectional surface from which M rays are reflected 

carry the index m. The threshold method greatly reduces the computer workload, and so permits 

consideration of a large number of surfaces. 

 

6. SUMMARY AND CONCLUSIONS 

We demonstrate creation of a bidirectional reflectivity model based on BRDF data for Z302. We then give a 

brief example of using the model in the MCRT environment to simulate the very experiment used to obtain 

the original data. The example provides insight into the interplay between the optical model resolution and 

the number of rays that must be traced to obtain an accurate simulation, while also demonstrating the value 

of such a simulation in experimental design. Finally, in a brief coda we indicate the structure of the 

numerical algorithm required to treat multiple reflections within an enclosure composed of bidirectionally 

reflecting surfaces. We conclude from the brief example presented that the methodology elaborated in this 

contribution can produce accurate simulation of radiant exchange among the surfaces of such enclosures. 
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