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A brief partial history of FI in (      ) supergravityold!
minimal

(Dienes, Thomas, 0911.0677)

Old & complex literature on FI terms; some root issues:

* Any gauge group must be combined with the R symmetry; 
the FI term contributes to the charges of the gravitino, etc

(Freedman ’77, Stelle-West ’78, Barbieri et al ’82)

which violates electric charge quantization.
(Witten, ``New issues…’’, ’86, footnote p 85)

This led to the lore that FI terms couldn’t exist in 4d N=1 
sugrav; however, recently….

* Sol’n:  quantize the FI term.
(Seiberg, ’10)

Seiberg worked w/ linearly-realized gp actions; 
I’ll describe today how to generalize, in classical theory.



Disambiguation:

* In 2009, Komargodski-Seiberg considered sugrav theories 
obtained by coupling rigid theories to gravity.   

(Not all sugrav’s of this form.)

Found that Kahler form on sugrav moduli space  
must be exact, and FI parameter must vanish.

* Seiberg’s 2010 paper concerns more general 
sugrav’s, not given by coupling a rigid theory.

It’s in these more general theories (inc. string 
compactifications) that FI can be nonzero,  

and this is what I will focus on today.



Outline:
• review Bagger-Witten (basis for FI)

• quantization of FI parameters in sugrav
when sugrav moduli space is a space

But sometimes one has a gauge theory 
(equiv’ly, a ``stack’’ instead of a space)

• review discrete gauge symmetries in string theory
(stacks and special stacks called gerbes)

• exs & prop’s of gerby moduli spaces
in field and string theory

• Bagger-Witten, FI quantization
for gauge theories (ie, when moduli space is a stack)



Review of Bagger-Witten:

Bagger-Witten’s pertinent paper studied 
N=1 sugrav in 4d.

Now, as a sugrav theory, it contains a  
(low-energy effective) 4d NLSM on a space, 

the supergravity moduli space.

They derived a constraint on the metric on that 
moduli space 

(assuming the moduli space is a smooth manifold).

(basis for our discussion of FI)



Review of Bagger-Witten:

Briefly, the supergravity moduli space M 
(the target space of a 4d NLSM) 

comes with a natural line bundle L, 
whose c1 = Kahler form.

(hence quantized)

Across coordinate patches,
K!K + f + fKahler potential

Sketch of derivation:

In rigid susy, the action
d 4∫ θ K(Φ,Φ)+ d 2∫ θW (Φ)+ c.c. is invariant.

In sugrav, the action
d 2∫ Θ2E 3

8
(DD − 8R)exp −K(Φ,Φ) / 3( )+W (Φ)⎡

⎣⎢
⎤
⎦⎥
+ c.c. is not.



Review of Bagger-Witten:

Across coordinate patches,
K!K + f + fKahler potential

Sketch of derivation:

Problem:  Sugrav action not invariant.
Fix:  demand fermions transform also.

hence
χ i ∈Γ(φ*(TM ⊗ L)) ψ µ ∈Γ(TX⊗φ*L−1)

for some line bdle L determined by f’s.

χ i! exp + i
2
Im f⎛

⎝⎜
⎞
⎠⎟ χ

i ψ µ! exp − i
2
Im f⎛

⎝⎜
⎞
⎠⎟ψ µ

Require

&

L = Bagger-Witten line bundle



Review of Bagger-Witten:

• Positivity of the Fermi kinetic energy implies that L-2 is a 
`positive’ line bundle (technically, `ample’).

As a result, W has poles.

• The superpotential W is a meromorphic section of L2,
which is `negative’.

• The line bundle L determines metric on the Fermi kinetic 
terms, & that metric => Kahler form.

Can show:



Review of Bagger-Witten:

B-W also appears in worldsheet physics.

Vertex operators for spacetime supercharge, gravitino,  
scalar superpartners, etc, 

 contain spectral flow operator of the N=2 algebra.
(Recall this is the operator that rotates R     NS sectors.)↔

The spectral flow operator is charged under 
U(1) subset of N=2 algebra.

As walk around loops on SCFT moduli space,  
the N=2 algebra rotates into itself up to global symmetry 

transformations — U(1) transformations. 

Thus, spectral flow operator (& gravitino etc) are sections of a 
line bundle over the SCFT moduli space.

(Distler, Periwal-Strominger, ’90) 



Review of Bagger-Witten:

On (2,2) locus in heterotic compactification,  
singularities in spacetime superpotential W 
arise from divergent sums of rat’l curves.

Ex: if BW line bundle L is trivial, 
then no need for W to have poles, hence expect no GW inv’ts.

Along cpx moduli, B-W line bundle is the Hodge bundle 
= line bundle of hol’ top forms over CY moduli space

Picard-Fuchs equ’ns can give holonomies of that line bundle.
(Candelas, de la Ossa, Font, Katz, Morrison, ’93)

The spectral flow operator is, in a NLSM,
= (holomorphic top-form) f(moduli)

(Lerche-Vafa-Warner ’89)



Review of Bagger-Witten:

• consequence of units in EFT analysis
• dovetails with fact that in rigid limit, no strings,

hence no GW inv’ts, so expect BW to be trivial.

As an aside, when one takes rigid limits of sugrav theories, 
one obtains NLSM’s with trivial BW line bundles.

(Lapan et al ’11, Festuccia-Seiberg ’11)

Suffice it to say, in string theory, 
the Bagger-Witten line bundle is in general nontrivial, 

and is related to e.g. Gromov-Witten invariants.



Bagger-Witten dates to early ‘80s.

More recently, there has been progress on  
FI terms in 4d sugrav.

Seiberg in May 2010 argued that, 
in the special case that the group action on the 

sugrav moduli space is realized linearly 
(ie, moduli space = vector space V, 
group acting as a subgp of GL(V) ), 

the FI term exists & is quantized.

I’ll discuss generalization to nonlinear realizations 
(ie, gen’l Kahler moduli spaces) today.

Bagger-Witten’s story plays a crucial role.



Quick & dirty argument for FI quantization:

Continuously varying the FI term, 
continuously varies the symplectic form on the quotient space.

But that symplectic form = Kahler form, 
& Bagger-Witten says is quantized.

Consistency requires FI term be quantized too.

Problem:
— IR limit not nec’ same as NLSM, so irrelevant to B-W

Nice intuition, but need to work harder.



To gain a more complete understanding, 
let’s consider gauging the Bagger-Witten story.

Have:

• sugrav moduli space M
• line bundle L over M (Bagger-Witten)
• group action on moduli space M

Need to specify how group acts on L ….



In principle, if we now wish to gauge a group action 
on the supergravity moduli space M, 

then must specify how the group action lifts to the line bdle L.

• Not always possible:
Group actions on spaces do not always lift to bundles.

Ex: spinors under rotations; 
rotate      instead of     .4π 2π

— classical constraint on sugrav theories…

• Not unique:
when they do lift, there are multiple lifts, 

differing by gauge transformations in essence.

(These different lifts will be the FI parameters.)



We’ll see FI as a choice of group action on the 
Bagger-Witten line bundle directly in sugrav.

First:  what is D ?

For linearly realized group action,

If scalars     have charges     w.r.t. U(1), 
then

φi qi

D = qi
i
∑ |φi |

2

up to additive shift (by Fayet-Iliopoulos parameter).

How to describe D more generally?



Def’n of D more generally:

δφ i = ε(a)X (a)i describes infinitesimal group action on M

where X (a) = X (a)i ∂
∂φ i ``holomorphic Killing vector’’

`Killing’ implies
∇iX j

(a) +∇ j Xi
(a) = 0

∇ ı X j
(a) +∇ j Xı

(a) = 0

which implies giȷ X
(a)ȷ = i ∂

∂φ i D
(a)

giȷ X
(a)i = − i ∂

∂φ ȷ
D(a)

for some       — defines        up to additive shift (FI)D(a) D(a)



Closer examination of the supergravity:

δφ i = ε(a)X (a)i describes infinitesimal group action on M
δAµ

(a) = ∂µε
(a) + f abcε(b)Aµ

(c)

δK = ε(a)F (a) + ε(a)F (a)

where F (a) = X (a)K + i D(a)

K!K + f + f

χ i! exp + i
2
Im f⎛

⎝⎜
⎞
⎠⎟ χ

i ψ µ! exp − i
2
Im f⎛

⎝⎜
⎞
⎠⎟ψ µ

Recall implies

&

Hence • gp action on           includes            termsχ i , ψ µ ImF(a)

• This will define the group action on L

gauge transformation



Indeed:

δφ i = ε(a)X (a)i

δAµ
(a) = ∂µε

(a) + f abcε(b)Aµ
(c)

δK = ε(a)F (a) + ε(a)F (a)

where F (a) = X (a)K + i D(a)

δλ (a) = f abcε(b)λ (c) − i
2
ε(a)(ImF (a) )λ (a)

δχ i = ε(a)[∂X
(a)i

∂φ j χ j + i
2
ImF (a)( )χ i]

δψ µ = - i
2
ε(a) ImF (a)( )ψ µ

describes infinitesimal group action on M

gaugino

gravitino

scalar superpartner

gauge transformation

Encode infinitesimal action on L



We need the group to be represented faithfully.

Infinitesimally, the D’s can be chosen to obey

(X (a)i ∂i + X
(a) ı ∂ ı )D(b) = - f abcD(c)

and then
δ (b)ε(a)ImF (a) −δ (a)ε(b)ImF (b) = − ε(a)ε(b) f abcImF (c)

If the group is semisimple, 
the constraints above will fix D. 

If there are U(1) factors, must work harder….

Next:  constraints from representing group ….



An infinitesimal action is not enough.

Need an action of the group on L, 
not just its Lie algebra.

!g = exp i
2
ε(a)ImF (a)⎛

⎝⎜
⎞
⎠⎟is

Require !g !h = gh!

so that the group is honestly represented.

(This is the part that can’t always be done.)

Lift of g = exp iε(a)T a( ) to line bundle L



The lifts !g might not obey !g !h = gh! initially,
but we can try to adjust them:

Since F (a) = X (a)K + iD(a) ,

shifting D(a)!D(a) +α (a)

is equivalent to adding a phase to   :!g

!g ≡ exp i
2
ε(a)ImF (a)⎛

⎝⎜
⎞
⎠⎟" exp i

2
ε(a)ImF (a)⎛

⎝⎜
⎞
⎠⎟ exp

i
2
ε(a)α (a)⎛

⎝⎜
⎞
⎠⎟

= !gexp(iθg )

θg =
1
2
ε(a)α (a)for encoding the shift in D(a).



If the lifts !g do not obey !g !h = gh! ,

then we can shift D(a) to add phases:
!g" !gexp iθg( )

That might fix the problem, maybe.

Globally, the group      formed by the    is an extension!G !g

1→U(1)→ !G→G→1

If that extension splits, meaning                     ,  
we can fix the problem.

!G ≅G⊕U(1)

If not, we’re stuck — cannot gauge G, 
not even classically.

(new consistency condition on classical sugrav)



Let’s assume the extension splits, so !G ≅G⊕U(1)
and we can fix the problem and gauge G (classically).

In this case, there are multiple consistent      ’s,  
differing by phases.

{ !g}

Those different possibilities correspond to the 
different possible FI parameters 

— remember, the phases originate as shifts of       .D(a)

Let’s count them. 
We’ll see they’re quantized.



Count set of possible consistent lifts      :{ !g}

Start with one set of consistent lifts      ,{ !g}
i.e. lifts obeying !g !h = gh!

Shift D: !g" ! ′g ≡ !gexp iθg( )
Demand ! ′g !′h = gh! '

This implies θg +θh =θgh

Result:  Set of lifts is Hom(G,U(1))

(= set of possible FI parameters)



So far:  set of possible lifts is Hom(G,U(1))

• This is a standard math result
for lifts of group actions to line bundles.

(though the sugrav realization is novel)

• Lifts = FI parameters,
so we see that FI parameters are quantized.

Ex: G =U(1) Hom(G,U(1))=!
— integrally many lifts / FI parameters

Ex: G Hom(G,U(1))= 0semisimple

— only one lift / FI parameter



Summary so far:

Although the        were only defined up to const’ shift:D(a)

giȷ X
(a)ȷ = i ∂

∂φ i D
(a)

the constraint !g !h = gh!
determines their values up to a (quantized)  

shift by elements of Hom(G,U(1)) 
= possible values of FI parameter



Supersymmetry breaking

Is sometimes forced upon us.

If the FI parameters could be varied continuously, 
then we could typically solve   D=0    just by 

suitably varying FI.

Since the FI parameters are quantized in sugrav, 
sometimes one cannot solve   D=0   for any 

available FI parameter.



Supersymmetry breaking

Example: M = P1 G = SU(2)

Hom(SU(2),U(1))= 0
so FI, equivariant lift are unique

(Bagger, 1983)

For Bagger-Witten L = O(n),

(D(1) )2 + (D(2) )2 + (D(3) )2 = n
2π

⎛
⎝⎜

⎞
⎠⎟
2

(Use                     on     , plus fact that D’s obey Lie algebra 
rel’ns to fix the value above.)

Da =φT aφ P1

susy always broken in this example



Math interpretation

• In rigid susy, gauging ~ symplectic reduction

• Symplectic quotients do not have a restriction
to integral Kahler classes; 

this cannot be a symplectic quotient.

• Instead, propose:  GIT quotients.

• Symplectic / GIT sometimes used interchangeably;
however, GIT quotients restrict to integral classes.



Symplectic!
quotients

GIT!
quotients

complex Kahler manifolds,!
integral Kahler forms



Why should GIT be relevant?

• To specify GIT,
need to give an ample line bundle on original space, 

that determines a projective embedding.
(= Bagger-Witten line bundle;  

                  `ample’ from kinetic term positivity)
• Must specify a group action on that line bundle;

Kahler class ultimately determined by that group action, 
in same fashion as here.

Same structure as here:  thus, sugrav = GIT



So far, we’ve discussed B-W & FI for sugrav’s whose rigid limit 
includes a NLSM on a smooth manifold.

This is inadequate:

• Mathematically, moduli spaces of CY’s are never smooth 
manifolds.   

Instead, they’re (Deligne-Mumford) stacks.

• In a heterotic string compactification, for example, 
get a gauge theory, not a ungauged NLSM.

Even in a weakly-coupled Higgs phase, will still often have a 
residual finite gauge group.

These two issues solve one another: 
get gauge theory   if & only if   moduli space is a stack.



Briefly,

Working in a finite gauge theory will make the following 
modifications.

• Still have something like a Bagger-Witten line bundle,
but, transition functions no longer close on triple overlaps.

Instead, transition functions only close up to a  
(finite) gauge transformation.

Result is a generalization of a line bundle, 
albeit with fractional Chern classes.

Get basically same Bagger-Witten story,  
but now with fractional Kahler classes,  

and fractional FI parameters.



I’m sure you’re all well-acquainted with gauge theories, 
so let me focus on explaining the other half:  stacks.

A stack is a generalization of a space.

Idea:  defined by incoming maps.

(and so nicely suited for NLSM’s; 
just have path integral sum over what 

the def’n gives you)



Example:  A space X as a stack

For every other space Y, associate to Y the set of 
continuous maps Y —> X

Example:  A quotient stack [X/G]

Maps Y —> [X/G] are pairs

(principal G bundle (w/ connection) E on Y, 
G-equivariant map E —> X)

— the same data appearing in gauged NLSM

If Y=T2  &  G finite, g
h

X

= twisted sector maps in string orbifold



All smooth `Deligne-Mumford’ stacks (over    ) 
can be described as [X/G] 

for some X, some G

!

(G not necessary finite, not necessarily effectively-acting 
— these are not all orbifolds)

Program:
A NLSM on a stack 

is a G-gauged sigma model on X

Problem:  such presentations not unique; 
                                        same stack can be described by several X, G

Potential fix:  RG flow

2d:  extensive checks.  4d:  much less work.



Let’s consider a particularly interesting kind of stack.

Consider NLSM’s in which the sum over nonperturbative 
sectors has been restricted; 

only sum over maps of degree obeying divisibility property.

Since stacks describe, in essence, all possible NLSM’s, 
naturally this is a kind of stack.

(Can also build via coupling to TFT.)

Specifically, this sort of stack is known as a gerbe.

(ES, Distler, Pantev, Hellerman, ’05, GW ’01; Seiberg, Banks-Seiberg ’10)

These are equivalent to gauge theories in which a finite 
subgroup acts trivially.

(& then, BW & FI for sugrav’s on such)



Example:  Gerby susy         model in two dimensions!PN

How can this differ from ordinary susy          model ?!PN

Answer:  nonperturbative effects

Gauge theories w/ finite trivially-acting subgroup

• 2d U(1) susy gauge theory
• N+1 chiral superfields, charge k 

— nonminimal charges
— global unbroken ! k — acts trivially on fields



The difference lies in nonperturbative effects. 
(Perturbatively, having nonminimal charges makes no 

difference.)

2d:  Argument for compact worldsheet:

To specify a field completely,  
need to specify what bundle it couples to.

For example, if the gauge field ~ L, 
then for     to have charge     meansQΦ

Φ∈Γ(L⊗Q )

Different bundles => different zero modes 
=> different anomalies => different physics



Argument for noncompact worldsheet:

Utilize the fact that in 2d, 
theta angle acts as electric field.

Want Higgs fields to have charge k 
at the same same that instanton number is integral.

Latter is correlated to periodicity of theta angle; 
can fix to desired value by adding massive charge 
fields — for large enough separation, can excite, 

and that sets periodicity.

±1

(J Distler, R Plesser, Aspen 2004 & hepth/0502027, 0502044, 0502053;!
N Seiberg, Banks-Seiberg, 2010)



So far, only discussed 2d case.
There is a closely analogous argument in related  

four-dimensional models coupled to gravity.
Instead of theta angle, 

use Reissner-Nordstrom black holes.

Idea:  if all states in the theory have charge a multiple of k, 
then gerbe theory is same as ordinary one, 

just rescale charges.
However, if have massive minimally-charged fields, 

then a RN BH can Hawking radiate down to charge 1, 
and so can sense fields with mass > cutoff.

(J Distler, private communication)



Return to the 2d gerby         example:!PN

Compare physics of this and ordinary         model:!PN

Example:  Anomalous global U(1)’s
!PN−1:
Here:

U(1)A!"2N
U(1)A!"2kN

Example:  A model correlation functions
!PN−1:
Here:

〈ω N (d+1)−1〉 = qd

〈ω N (kd+1)−1〉 = qd

Example:  quantum cohomology
!PN−1:
Here:

![x] / (xN − q)
![x] / (xkN − q)

Different!
physics



More generally, for 2d gerbe theories, 
there are somewhat extensive results.

• quantum cohomology rings

• mirror symmetry, incl. Toda duals

• decomposition conjecture for (2,2) susy theories….
(will describe next)



Decomposition conjecture

In the special case of `banded’ gerbes, 
the decomposition conjecture says

CFT(G-gerbe on X) = CFT (X,B)
Ĝ
⨿⎛⎝⎜

⎞
⎠⎟

where the B field is determined by the image of

H 2 (X,Z(G)) →
Z (G )→U (1)

H 2 (X,U(1))

More gen’ly, disjoint union of different spaces.

finite gauge 
theory disjoint union 

of spaces

(Hellerman, Henriques,!
Pantev, Sharpe, etc)



Example:

Consider               where the center acts trivially.[X /D4 ]

1→!2 →D4 →!2 ×!2 →1

Can show this orbifold is physically distinct from                      ; 
for example,

[X /!2 ×!2 ]

Z([X /D4 ])= Z([X /!2 ×!2 ]⨿ [X /!2 ×!2 ]d.t.)



Suffice it to say, 
there’s been considerable work done on the 2d case.

Pertinent here:  4d.

Specifically, 
4d NLSM on sugrav moduli stack 

                            = 4d gauged NLSM, finite gauge group

Much less work done; 
I’ll outline some results and issues.



Four dimensions

Example:
Consider a U(1) susy gauge theory in 4d, 

with N (massless) chiral superfields of charge k, 
and N of charge -k.

To be physically different from the charge 1 case, 
need either:

• topologically nontrivial 4d spacetime
(so that there are U(1) instantons)

• massive fields of charge +1, -1
or

(parallels 2d case)



Examples of gerby moduli spaces do exist in string theory:

Consider toroidally-compactified                    heterotic string.Spin(32)/!2

Low-energy theory has only adjoints, 
hence all invariant under      center of                     .!2 Spin(32)/!2

But, there are massive states that do see the center.

So:  Higgs phase has finite gauge group, 
acting trivially on massless matter.

Math’ly, equivalent observation is that the moduli space of  
flat                    connections has      gerbe structure.!2Spin(32)/!2



One can get enhanced gerbe structures along various strata.

Ex:  toroidally-compactified E8xE8 heterotic string

• no center, so no gerbe structure globally

• but, over stratum where E8xE8 broken to
Spin(16)/!2 × Spin(16)/!2

there is a             gerbe structure, 
matching the corresponding                   compactification.

!2 ×!2
Spin(32)/!2



Related examples in Seiberg duality:

Several years ago, Matt Strassler was very interested in  
Spin/SO Seiberg duals.

(hepth/9507018, 9510228, 9709081, 9808073)

Prototypical example:
• Spin(8) gauge theory with Nf fields in 8V,

and one massive 8S

Seiberg dual to

• SO(Nf-4)- gauge theory with Nf vectors
(from Higgsing SU(Nf-4) theory)

massive 8S <—> Z2 monopole
π 2 (SU(N f − 4) / SO(N f − 4))=!2



• Spin(8) gauge theory with Nf fields in 8V,
and one massive 8S

Seiberg dual to

• SO(Nf-4)- gauge theory with Nf vectors
(from Higgsing SU(Nf-4) theory)

massive 8S <—> Z2 monopole

Important for his analysis that a Z2 center of Spin(8) 
acted trivially on massless matter, 
but nontrivially on the massive 8S

— so Z2 gerbe structure on moduli space on one side



Apply to  BW & quantization of FI parameters:

For a simple example, 
consider the (anomalous) 4d gerby         model:!PN

• U(1) gauge theory

• N+1 chiral superfields charge k

now in supergravity

(The anomaly is irrelevant; 
more complicated anomaly-free examples exist.)



• U(1) gauge theory

• N+1 chiral superfields charge k

D terms: k
i
∑ |φi |

2 = r

But r is an integer…

⇒ |
i
∑ φi |

2 = r / k

Result looks like ordinary         model, 
but now with fractional Kahler class or FI term.

!PN

Interpretation ?



We’ve argued that FI integrality in sugrav 
follows b/c FI term is a choice of 

equivariant structure on the Bagger-Witten line bundle.

Over a gerbe, there are `fractional’ line bundles.

Ex:  gerbe on !PN

[x0,!, xN ]≅ [λ
k x0,!,λ

k xN ]
Has homogeneous coordinates

Can define a line bundle L by y! λ ny
Call it O(n / k)Has c1 = n/k

If n/k not integer, then transition functions close on  
triple overlaps only up to element of ! k

Call such line bundles fractional.



Let’s redo Bagger-Witten, 
when the sugrav moduli space is a stack or gerbe 

(= have NLSM + finite gauge theory)

For same reasons as ordinary case,

χ i ∈Γ(φ*(TM ⊗ L)) ψ µ ∈Γ(TX⊗φ*L−1)

Now, however, M is a stack or gerbe.

Stacks & gerbes have more (ie fractional) bundles 
than their underlying spaces, 

so L can be fractional.

That’s what’s happening in the previous r/k example.



Potential issue:

Fractional line bundles on gerbes have no smooth sections, 
only multisections with branch cuts.

However, all maps into gerbes 
= maps into spaces w/ divisibility constraint, 

which turns out to  
ensure pullback bundles are honest bundles. 

So, even if L is fractional, 
   is an honest bundle, 

and so no branch cuts in             .
φ*L

χ i , ψ µ



So far:

• outlined how BW, FI can be fractional,
at least in principle

• Also seen exs of gerby moduli spaces in string theory

• But, do fractional BW, FI ever arise in actual
string compactifications?

Do fractional BW, FI admit UV completions?

Open question.



Have we missed any subtleties?

Maybe:

The 2d analogue is heterotic string on a gerbe 
(gauge group acts trivially on space, 

nontrivially on bundle).

These sometimes break modular invariance; 
details not well understood.

Speculation:  possible that (some) 4d examples suffer from 
(discrete) anomalies.



Summary:

• reviewed Bagger-Witten

• quantization of FI parameters in sugrav,
for ordinary NLSM’s (= moduli space is a space)

• reviewed stacks
NLSM on stack = gauged NLSM

• exs & prop’s of gerby moduli spaces in field & string thy

• Bagger-Witten, FI quantization when moduli space
is a stack or gerbe — get fractional results


