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Over the last half dozen years, there’s been a tremendous 
amount of progress in perturbative string compactifications.

A few of my favorite examples:

Far too much to cover in one talk!  I’ll focus on just one….

• nonpert’ realizations of geometry (Pfaffians, double covers)
(Hori-Tong ’06, Caldararu et al ’07,…)

• perturbative GLSM’s for Pfaffians (Hori ’11, Jockers et al ’12,…)

• non-birational GLSM phases - physical realization of 
homological projective duality (Hori-Tong ’06, Caldararu et al ’07,  

Ballard et al ’12; Kuznetsov ’05-’06,…)

• examples of closed strings on noncommutative res’ns
(Caldararu et al ’07, Addington et al ’12, ES ’13)

• localization techniques: new GW & elliptic genus 
computations, role of Gamma classes, …

(Benini-Cremonesi ’12, Doroud et al ’12; Jockers et al ’12, Halverson et al ’13, Hori-Romo ’13, Benini et al ’13, ….)

• heterotic strings:  nonpert’ corrections, 2d dualities,  
non-Kahler moduli (many)



Today I’ll restrict to
• heterotic strings:  nonpert’ corrections, 2d dualities,  

non-Kahler moduli

My goal today: an overview of progress towards solving the 
outstanding problems in perturbative heterotic string 

compactifications.

Review gen’l aspects next….

Briefly, we need to generalize instanton corrections  
and mirror symmetry to heterotic theories, 

and some progress has been made.



Some background.

In 10d, a heterotic string describes metric & gauge field.

Described on worldsheet by 2d (0,2) susy theory.

To compactify, must specify not only a space    , 
but also a bundle     on that space, 
satisfying consistency conditions

X
E

[trF ^ F ] = [trR ^R]

Simplest case:                , corresponding to (2,2) susy.E = TX

“embed the spin connection in gauge connection”



Simplest case:  compactification on a Calabi-Yau with 
gauge bundle = tangent bundle 

(`embedding the spin connection’ = (2,2) locus)

In this case, we know basics:

• massless states (inc. moduli)
— counted by cohomology of the CY; `chiral ring’

• Yukawa couplings, superpotentials 
    (inc. nonperturbative corrections)

Nonperturbative corrections = GW inv’ts

27
3

273

= A model TFT computation

= B model TFT computation



More gen’l case:  compactification on a Calabi-Yau with 
gauge bundle     tangent bundle

• massless states (inc. moduli)

— counted by sheaf cohomology of the CY

• Yukawa couplings, superpotentials 
    (inc. nonperturbative corrections)

Nonperturbative corrections    GW inv’ts

27
3

273

= A/2 model computation

= B/2 model computation

6=

6=

(Worldsheet has (0,2) susy.)



• Yukawa couplings, superpotentials 
    (inc. nonperturbative corrections)

Nonperturbative corrections    GW inv’ts

27
3

273

= A/2 model computation

= B/2 model computation

6=

Understanding these nonperturbative corrections is  
the central issue in perturbative heterotic strings on CYs. 

quantum sheaf cohomology
(0,2) mirror symmetry

generalizing ordinary quantum cohomology & mirror symmetry.

And then there are non-Kahler compactifications…



Heterotic compactifications on non-Kahler manifolds 
have also been studied, but far less is known.

— we currently have a partial grasp on moduli

— other massless states, couplings, are unknown

(Svanes-de la Ossa, Anderson-Gray-Sharpe ’14; 
Melnikov-Sharpe ’11)



Outline:

• Chiral states in 2d (0,2) NLSM’s
• Product structures in chiral rings in A/2, B/2 twists:

• Nonabelian GLSMs:

Gadde-Gukov-Putrov triality

quantum sheaf cohomology

Dualities in 2d and their geometry

My goal today is to give a survey of some of the progress 
towards solving those problems over the last few years, 

through the lens of chiral rings.

• Survey of moduli in non-Kahler cases
(Progress in (0,2) mirrors left for another time.)



Review:  chiral rings in 2d (2,2) NLSM’s

Consists of states annihilated by  
1 of left-moving & 1 of right-moving supercharges.

4 distinct possibilities, labelled (c,c), (a,c), (c,a), (a,a)

In a NLSM on a complex Kahler manifold X, 
all correspond to cohomology of X.

More explicitly…

Play a fundamental role in e.g. massless spectra of string 
compactifications, and are protected against quantum 

corrections.

(Lerche-Vafa-Warner ’89)



Review:  chiral rings in 2d (2,2) NLSM’s

In a (R,R) sector, in a NLSM on a space X,  
states have the schematic form

b
j1···jp
ı1···ıq (�) 

ı1
+ · · · ıq

+ �,j1 · · · �,jp |0i

Q-cohomology classes, counted by Hp,q(X)

Sit in a topologically protected subsector.

 ± worldsheet fermions, ⇠ TX

Q = Q+ +Q� $ d

What’s heterotic analogue?



A heterotic worldsheet only has (0,2) susy  
instead of (2,2) susy, 

so the heterotic analogue will involve states  
annihilated by one supercharge instead of two.

What’s heterotic analogue?

For a (0,2) NLSM, on space     with bundle    , 
we’ll again look at (R,R) sector states….

X E



For 2d (0,2) NLSM’s on Calabi-Yau’s (CY’s), 
Distler-Greene (’88) worked out the analogue:

In a (R,R) sector, zero-energy Q+-closed states of form

close to large radius.
 +, �� worldsheet fermions, ⇠ TX, E

Q+-cohomology no longer in a topological subsector, 
but should be protected from perturbative corrections.

KX det E, trivialAssumed

So, for large-radius CY, should be reliable.

States counted by Q+-cohomology = Hq(X,^pE⇤)

Hp,q(X)= E ⇠= TXwhen ( (2,2) locus)

b
a1···ap

ı1···ıq (�) ı1
+ · · · ıq

+��,a1 · · ·��,ap |0i

Q+ $ @



Consider a more general 2d (0,2) NLSM near large-radius:

KX , det E need not be trivial

The zero-energy Q+-closed states again of the form

but now |0i ⇠ (det E)+1/2 ⌦K+1/2
X

for the Fock vacuum  i
+|0i = 0 = ��,a|0i

States counted by

Hq
⇣
X, (^pE⇤)⌦ (det E)+1/2 ⌦K

+1/2
X

⌘

Different Fock vacua choices give equivalent results….

b
a1···ap

ı1···ıq (�) ı1
+ · · · ıq

+��,a1 · · ·��,ap |0i

(Guo, Jia, ES, 2015)

Choice of square root encodes eg target space spin structure.



If instead we’d worked with a Fock vacuum defined by

then this one related to last one by

 i
+|0i0 = 0 = ��,a|0i0

and states of the form

Counted by

b
a1···ap

ı1···ıq (�) ı1
+ · · · ıq

+��,a1 · · ·��,ap |0i0

Hq
⇣
X, (^pE)⌦ (det E)�1/2 ⌦K

+1/2
X

⌘

|0i0 =

 
Y

a

��,a

!
|0i

|0i ⇠ (det E)+1/2 ⌦K+1/2
X

|0i0 ⇠ (det E)�1/2 ⌦K+1/2
X

= Hq
⇣
X, (^r�pE⇤)⌦ (det E)⌦ (det E)�1/2 ⌦K

+1/2
X

⌘

= Hq
⇣
X, (^r�pE⇤)⌦ (det E)+1/2 ⌦K

+1/2
X

⌘

(matching previous counting)



States:
H•

⇣
X, (^•E)⌦ (det E)�1/2 ⌦K

+1/2
X

⌘
= H•

⇣
X, (^•E⇤)⌦ (det E)+1/2 ⌦K

+1/2
X

⌘

Special case:  (2,2) locus
E = TX

H•
⇣
X, (^•E⇤)⌦ (det E)+1/2 ⌦K

+1/2
X

⌘
= H• (X,⌦•

X) = H•,•(X)

as expected

H•
⇣
X, (^•E)⌦ (det E)�1/2 ⌦K

+1/2
X

⌘
= H• (X,^•TX)

On a Calabi-Yau, or if K⌦2
X

⇠= OX



Other tests:

• Invariance under E $ E⇤

• Should be implicit in elliptic genera
Leading term is proportional to
Z

Â(TX) ^ ch
⇣
(det E)+1/2 ^�1 (E⇤)

⌘

=

Z
td(TX) ^ ch

⇣
^�1(E⇤)⌦ (det E)+1/2 ⌦K+1/2

X

⌘

=
X

i

(�)i�
⇣
(^iE⇤)⌦ (det E)+1/2 ⌦K+1/2

X

⌘

— matches

H•
⇣
X, (^•E)⌦ (det E)�1/2 ⌦K

+1/2
X

⌘
= H•

⇣
X, (^•E⇤)⌦ (det E)+1/2 ⌦K

+1/2
X

⌘

— manifest
= H•

⇣
X, (^•E⇤)⌦ (det E⇤)�1/2 ⌦K

+1/2
X

⌘

(a duality of (0,2) worldsheets)



Sometimes we can perform a (pseudo-) topological twist.

These NLSM’s have two anomalous global U(1)’s:

• a right-moving U(1)R

• a canonical left-moving U(1),
rotating the phase of all left fermions, 
which becomes U(1)R on (2,2) locus

If                        , then a nonanomalous U(1) exists 
along which we can twist right & left moving fermions.

det E±1 ⇠= KX

Possible twists….



A/2 model: Exists when (det E)�1 ⇠= KX

(on (2,2) locus, always possible; reduces to A model)

States: H• (X,^•E⇤)

B/2 model: det E ⇠= KXExists when

(on (2,2) locus, requires                    ; reduces to B model)K⌦2
X

⇠= OX

States: H• (X,^•E)

Exchanging              swaps the A/2, B/2 models.E $ E⇤

(Physically, just a complex conjugation of left movers.)



Product structures

So far we’ve just counted states. 
However, also need to know OPE’s.

(2,2) locus: OPE’s = `quantum cohomology’
In a compactification on a CY 3-fold,  

compute       couplings27
3

— Gromov-Witten inv’ts; well-established.

(0,2): OPE’s = `quantum sheaf cohomology’
In compactification, compute couplings as above

— not Gromov-Witten inv’ts, but a generalization

New methods needed… and a few have been developed.
(A Adams, J Distler, R Donagi, J Guffin, S Katz, J McOrist, I Melnikov, R Plesser, ES, ….)



Review of quantum sheaf cohomology

Quantum sheaf cohomology is the heterotic version of 
quantum cohomology — defined by space + bundle.

Ex:  ordinary quantum cohomology of Pn

![x] / (xn+1 − q)

Check:  When E=T, this becomes ![x, y] / (xn+1 − q1, yn+1 − q2 )

Compare: quantum sheaf cohomology of Pn × Pn
with bundle

0→O⊕O→
*
O(1,0)n+1⊕O(0,1)n+1→ E→ 0

where
*= Ax Bx

C!x D!x
⎡

⎣
⎢

⎤

⎦
⎥

is given by ![x, y] / ( det(Ax + By)− q1, det(Cx + Dy)− q2 )

homog’ coord’s on     ‘sx, !x Pn

(as expected:  q.s.c. should reduce to ordinary q.c. for E=T)



Review of quantum sheaf cohomology
Quantum sheaf cohomology

= OPE ring of the A/2 model

〈O1!On 〉 = ω1X∫ ∧!∧ω n = top-form( )
X∫

A model: Classical contribution:

ω i ∈H
pi ,qi (X)

A/2 model: Classical contribution:
〈O1!On 〉 = ω1X∫ ∧!∧ω n

Again, a top form, so get a number.

Schematically:

ω1 ∧!∧ω n ∈H
top (X,∧ topE*) = Htop (X,KX )Now,

using the anomaly constraint detE* ≅ KX



Review of quantum sheaf cohomology

Example:  classical sheaf cohomology on P1 × P1

with gauge bundle E a deformation of the tangent bundle:

0→W *⊗O→
*
O(1,0)2 ⊕O(0,1)2

Z*
! "### $### → E→ 0

where *= Ax Bx
C!x D!x

⎡

⎣
⎢

⎤

⎦
⎥ homog’ coord’s on     ‘sx, !x P1

W =!2and

To make this more clear, let’s consider an

Operators counted by H 1(E*)= H 0 (W ⊗O)=W

n-pt correlation function is a map SymnH1(E*)=SymnW→H n (∧n E*)

OPE’s = kernel
Plan:  study map corresponding to classical corr’ f’n



Review of quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

with gauge bundle E a deformation of the tangent bundle:

0→W *⊗O→
*
O(1,0)2 ⊕O(0,1)2

Z*
! "### $### → E→ 0

where *= Ax Bx
C!x D!x

⎡

⎣
⎢

⎤

⎦
⎥ homog’ coord’s on     ‘sx, !x P1

W =!2and
Since this is a rk 2 bundle, classical sheaf cohomology 

defined by products of 2 elements of                                 .H 1(E*) = H 0 (W ⊗O)=W

0→∧2 E*→∧2 Z→ Z⊗W →Sym2W ⊗O→ 0

H 0 (Sym2W ⊗O)→H 2 (∧2E*) = corr’ f’nSo, we want to study map

This map is encoded in the resolution



Review of quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

0→∧2 E*→∧2 Z → Z⊗W →Sym2W ⊗O→ 0

Break into short exact sequences:

0→∧2 E*→∧2 Z → S1→ 0
→ Z⊗W →Sym2W ⊗O→ 00→ S1

Examine second sequence:

H 0 (Z⊗W )→H 0 (Sym2W⊗O)→
δ
H 1(S1)→H 1(Z⊗W )

Since Z is a sum of O(-1,0)’s, O(0,-1)’s,
0 0

hence H 0 (Sym2W ⊗O)→
~
H 1(S1) is an iso.δ :

induces

Next, consider the other short exact sequence at top….



Review of quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

0→∧2 E*→∧2 Z → Z⊗W →Sym2W ⊗O→ 0

Break into short exact sequences:

0→∧2 E*→∧2 Z → S1→ 0

→ Z⊗W →Sym2W ⊗O→ 00→ S1

Examine other sequence:

H 1(∧2Z )→H 1(S1)→
δ
H 2 (∧2E*)→H 2 (∧2Z )

Since Z is a sum of O(-1,0)’s, O(0,-1)’s,
H 2 (∧2Z )= 0 but H 1(∧2Z )=!⊕!
and so H 1(S1)→H 2 (∧2E*) has a 2d kernel.

Now, assemble the coboundary maps….

H 0 (Sym2W ⊗O)→
~
H 1(S1)δ :

δ :

0
induces



Review of quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

0→∧2 E*→∧2 Z → Z⊗W →Sym2W ⊗O→ 0

Now, assemble the coboundary maps….

A classical (2-pt) correlation function is computed as
H 0 (Sym2W ⊗O)→

~
H 1(S1)H 1(S1)→H 2 (∧2E*)

δ δ

where the right map has a 2d kernel, which one can show is 
generated by

det(Aψ + B !ψ ) det(Cψ + D !ψ ),
where A, B, C, D are four matrices defining the def’ E, 

and         correspond to elements of a basis for W.ψ , !ψ

Classical sheaf cohomology ring:
![ψ , "ψ ] / det(Aψ + B "ψ ),det(Cψ + D "ψ )( )



Review of quantum sheaf cohomology
Quantum sheaf cohomology

= OPE ring of the A/2 model

Instanton sectors have the same form, 
except X replaced by moduli space M of instantons, 
E replaced by induced sheaf F over moduli space M.

Must compactify M, 
and extend F over compactification divisor.

∧ topE* ≅ KX

ch2(E)= ch2(TX) }⇒
GRR

∧ topF* ≅ KM

Within any one sector, can follow the same method just 
outlined….



Review of quantum sheaf cohomology
In the case of our example, 

one can show that in a sector of instanton degree (a,b), 
the `classical’ ring in that sector is of the form

Sym•W/ (Qa+1, !Qb+1)
where Q = det(Aψ + B !ψ ) !Q = det(Cψ + D !ψ ),

Now, OPE’s can relate correlation functions in different 
instanton degrees, and so, should map ideals to ideals.

To be compatible with those ideals,
〈O〉a,b = q

′a −a !q ′b −b 〈OQ ′a −a !Q ′b −b 〉 ′a , ′b

for some constants q, !q => OPE’s Q = q, !Q = !q

— quantum sheaf cohomology rel’ns



Review of quantum sheaf cohomology

General result:

For any toric variety, and any def’ E of its tangent bundle,

0→W * ⊗O→
*
⊕O(!qi )

Z*
"#$→E → 0

the chiral ring is

∏α (detM (α ) )
Qα
a

= qa
where the M’s are matrices of chiral operators built from *.

(Donagi, Guffin, Katz, ES, ’11)



Review of quantum sheaf cohomology

So far, I’ve outlined mathematical computations of quantum 
sheaf cohomology, but GLSM-based methods also exist:

• Quantum cohomology  ( (2,2) ):
• Quantum sheaf cohomology  ( (0,2) ):

Morrison-Plesser ‘94

McOrist-Melnikov ’07, ‘08

Briefly, for (0,2) case:

One computes quantum corrections to effective action of form

Leff = d∫ θ + Υa
a
∑ log ∏α (detM (α ) )

Qα
a

/ qa⎡
⎣

⎤
⎦  

detM (α )( )Qα
a

α
∏ = qafrom which one derives

— these are q.s.c. rel’ns — match math’ computations



Review of quantum sheaf cohomology

State of the art:  computations on toric varieties

To do:  compact CY’s

Intermediate step:  Grassmannians (work in progress)

Briefly, what we need are better computational methods.

Conventional GW tricks seem to revolve around idea that A 
model is independent of complex structure, 

not necessarily true for A/2.
• McOrist-Melnikov ’08 have argued an analogue for A/2
• Despite attempts to check (Garavuso-ES ‘13),

still not well-understood



Next, let’s turn to nonabelian GLSMs:

So far, I’ve (secretly) been talking about abelian GLSM’s.

Gadde-Gukov-Putrov triality
Dualities in 2d and their geometry



Dualities in 2d and their geometry

Gauge theory (Seiberg) dualities —  
in which two different-looking theories RG flow to the same —  

are very interesting, and esp. in 4d have a long history.

Recently, there’s been a lot of interest in, and a number of 
proposals for, 2d gauge theory dualities, 

in both (2,2) and (0,2) susy.

However, most of those dualities seem to have a simple 
geometric understanding, as we’ll outline and utilize.

(Jia, ES, Wu, ’14)



In 2d theories, dualities often have a purely geometric 
understanding.

Trivial example:

U(k) gauge theory, 
n chiral multiplets

U(n-k) gauge theory, 
n chiral multiplets

RG RG

NLSM on G(k,n) NLSM on G(n-k,n)

But G(k,n) = G(n-k,n),  
so IR limits equivalent.

=

Can check chiral rings, elliptic genera, etc.
In less trivial examples, we apply similar tricks to systematize 

understanding, & to make predictions.



U(k) gauge group, 
matter:  n chirals in fund’ k, n>k,  

                    A chirals in antifund’ k*, A<n

= Tot (Q*)A →G(n-k,n)( )

U(n-k) gauge group, 
matter:  n chirals     in fund’ k,  

                  A chirals P in antifund’ k*, 
         nA neutral chirals M,  
superpotential:  W = M    P

Φ

Φ

Seiberg

0→ S→
Φ
On →Q→ 0Build physics for RHS using

Another example, in 2d, (2,2) susy:

Benini-Cremonesi ’12

So, 2d analogue of Seiberg duality has geometric description.

RG

NLSM on Tot SA →G(k,n)( )
RG

= (!kn ×!kA ) / /GL(k)
RG

…
RG

…

& discover the upper RHS.



U(k) gauge group, 
matter:  n chirals in fund’ k, n>k,  

                    A chirals in antifund’ k*, A<n

U(n-k) gauge group, 
matter:  n chirals     in fund’ k,  

                   A chirals P in antifund’ k*, 
           nA neutral chirals M,  
superpotential:  W = M    P

Φ

Φ

Seiberg

dual

To be fair, I’ve glossed over something….
To play this game in (2,2), I want the geometry to be either 

Fano or CY, to avoid `discrete Coulomb vacua.’

If the geometry is, say, negatively curved, then the correct 
intermediate scale description has extra `dust’,  

and the correct mathematical application is more complicated.

I’ll suppress this level of detail in what follows.

Another example, in 2d, (2,2) susy:



U(2) gauge theory, 
matter:  4 chirals    in 2φi

U(1) gauge theory, 
6 chirals zij = -zji, i,j=1…4, of charge +1, 

one chiral P of charge -2, 
superpotential

W = P(z12 z34 - z13 z24 + z14 z23)

The physical duality implied at top relates abelian & 
nonabelian gauge theories, which in 4d for ex would be 

surprising.

= !2⋅4 / /GL(2) = {z12z34 − z13z24 + z14z23}⊂!
6 / /!×

G(2,4) degree 2 hypersurface in P5=

RG RG

RG
…

A prediction, in 2d, (2,2) susy:
(Jia, ES, Wu, ’14)



( (0,2) susy )Another prediction

U(2) gauge theory
4 chirals in fundamental
1 Fermi in (-4,-4) (hypersurface)
8 Fermi’s in (1,1) (gauge bundle E)
1 chiral in (-2,-2) (gauge bundle E)
2 chirals in (-3,-3) (gauge bundle E)

plus superpotential

U(1) gauge theory
6 chirals charge +1

2 Fermi’s charge -2, -4
8 Fermi’s charge +1
1 chiral charge -2
2 chirals charge -3
plus superpotential

Bundle
0→ E→⊕8 O(1,1)→O(2,2)⊕2 O(3,3)→ 0

on the CY G(2,4)[4].

Bundle
0→ E→⊕8 O(1)→O(2)⊕2 O(3)→ 0

on the CY P5[2,4]

• both satisfy anomaly cancellation • elliptic genera match

RGRG

=



Further predictions ( (2,2) susy )

U(2) gauge theory,  
n chirals in fundamental

U(n-2)xU(1) gauge theory, 
n chirals X in fundamental of U(n-2), 

n chirals P in antifundamental of U(n-2), 
(n choose 2) chirals zij = - zji  

           each of charge +1 under U(1), 
W = tr PAX

G(2,n) = rank 2 locus of nxn matrix A over P
n
2

⎛
⎝⎜

⎞
⎠⎟
−1

A(zij )=
z11 = 0
z21 = −z12
z31 = −z13

z12
z22 = 0
z32 = −z23

z13
z23

z33 = 0
! ! !

!
!
!
!

[ ]
In this fashion, straightforward to generate examples; 

let’s move on..…

RGRG

(using description of Pfaffians of  
Hori ‘11, Jockers et al ’12)



Triality ( (0,2) susy )
(Gadde-Gukov-Putrov ’13-’14)

GGP proposed that triples of (0,2) GLSM’s might flow to the 
same IR fixed point.

In terms of lower-energy NLSM’s, the theories are

SA � (Q⇤)2k+A�n � (detS⇤)2 �! G(k, n)

S2k+A�n � (Q⇤)n � (detS⇤)2 �! G(n� k,A)

Sn � (Q⇤)A � (detS⇤)2 �! G(A� n+ k, 2k +A� n)

Gauge bundle Target space�!

related by permuting 3 of flavor symmetries.
Susy unbroken iff geometric description above valid.

However, triality is not merely a geometric equivalence….



Gadde-Gukov-Putrov triality ( (0,2) susy )

SA ⊕ (Q*)2k+A−n →G(k,n) (S*)A ⊕ (Q*)n →G(k,2k + A − n)

(Q*)A ⊕ S2k+A−n →G(n − k,n) (Q*)n ⊕ (S*)2k+A−n →G(n − k,A)

Sn ⊕ (Q*)A →G(A − n + k,2k + A − n) (S*)n ⊕ (Q*)2k+A−n →G(A − n + k,A)

(Q*)n ⊕ S A →G(k,2k + A − n) (Q)2k+A−n ⊕ SA →G(k,n)

=

=

=

phase

phase

phase

For brevity, I’ve omitted writing out the (0,2) gauge theory.

Utilizes another duality: NLSM(X,E) = NLSM(X,E*)

(’13)

bundle space

Though related, these spaces & bundles not all the same.



(0,2) NLSM’s:

IR fixed point:

Triality predicts

IR SCFT = (left-moving Kac-Moody)   (rt-moving Kazama-Suzuki)⌦

UV global SU(n)⇥ SU(A)⇥ SU(2k +A� n)⇥ SU(2)

SU(n)k+A�n ⇥ SU(A)k ⇥ SU(2k +A� n)n�k ⇥ SU(2)1

(present in GLSM & each NLSM)
enhanced in IR to affine

Chiral states should live in integrable reps of affine algebras.



Let’s study triality, using chiral rings.

(0,2) NLSM’s:

IR fixed point:

Plan: Compute chiral states in each theory and compare.

Alas, not quite so simple….

Community expectation:  (0,2) chiral rings should match.



Subtleties in comparing chiral states:

• Q*-cohomology in large-radius (0,2) NLSM invariant under 
perturbative corrections, but, here RG flow goes to strong 

coupling — states might enter/leave.

We’ll see exactly that —  
not all states will match between different presentations,  

but, states that don’t match, shouldn’t be in IR either.

In fact, this is generic behavior expected in QFT for 
non-protected states. 

What’s surprising here is that it happens in (0,2) chiral rings — 
not widely expected in the (0,2) community — and triality 

provides clean examples demonstrating this behavior.



Subtleties in comparing chiral states:

• Chiral ring computations in 2d KS models not under good 
control; Lie algebra cohomology is part of answer.

We’ll focus on comparing states across UV presentations, 
then, merely outline in general terms how form of Lie algebra 

cohomology is appropriate.



Example: 

E = U ⌦ S + V ⌦Q⇤ + W ⌦ detS⇤ �! PṼ ⇤ = P2

E = U ⌦ S⇤ + Ṽ ⌦Q⇤ + W ⌦ detS �! PV ⇤ = P1
r ⌧ 0 :

r � 0 :

U = C3, V = C2, W = C2, Ṽ = C3

Let’s compare states in these two phases 
(= 2 of 3 triality-related geometries)….



Example: 

E = U ⌦ S + V ⌦Q⇤ + W ⌦ detS⇤ �! PṼ ⇤ = P2

r � 0 :

Compute states:
H•(P2, (^•E)⌦ (det E)�1/2 ⌦K

+1/2
P2 )

Global symmetries:
SU(U)⇥ SU(V )⇥ SU(W ) manifest — acts on bundle
SU(Ṽ ) also present:

Compute sheaf cohomology with Bott-Borel-Weil, 
which gives sheaf cohomology as reps of          .U(Ṽ )



These computations are an application of Bott-Borel-Weil, 
so, brief overview:

For a bundle      on         defined by rep’    of   ,⇠E⇠ G/P P

H•(G/P, E⇠) is naturally a rep’ of    .G

For Grassmannians,

(a1, · · · , ak) rep’ of U(k)
(b1, · · · , bn�k) rep’ of U(n-k)

‘Mutate’                                         to                    rep of U(n)(a1, · · · , ak, b1, · · · , bn�k) (c1, · · · , cn)

H• �G(k, n),K(a1,··· ,ak)S
⇤ ⌦K(b1,··· ,bn�k)Q

⇤�compute :

H• �G(k, n),K(a1,··· ,ak)S
⇤ ⌦K(b1,··· ,bn�k)Q

⇤� = K(c1,··· ,cn)V
⇤

for     = number of mutations, & zero in other degrees.•

a1 � a2 � · · · � ak

b1 � b2 � · · · � bn�k



Ex: H•(G(k, Ṽ ⇤), U ⌦ S⇤)

= U ⌦H•(G(k, Ṽ ⇤),K(1,0,··· ,0)S
⇤ ⌦K(0,0,··· ,0)Q

⇤)

Bott-Borel-Weil, cont’d

= U ⌦K(1,0,··· ,0)Ṽ �•,0 = U ⌦ Ṽ �•,0



Constraints on results:

• Invariance under Serre duality

H•(X, E) = Hdim�•(X, E⇤ ⌦KX)⇤

Should map state spectrum into itself, 
dualizing representation.

• Integrability of representations

Let’s look at some states in the example….

GGP triality predicts that states should live  
in `integrable’ rep’s.

integrable reps have Young tableaux of width    kSU(n)k :



SU(3)xSU(2)xSU(2)xSU(3) U(1)3

(1,1,1,1) (+3,0,-3)
(1,1,2,3) (+2,-1/2,-3/2)
(1,1,1,3*) (+1,+2,-3)
(3,2,1,1) (+2,0,-2)
(3,1,2,1) (-2,-3/2,-1/2)
(1,2,2,3*) (+1,+1/2,-3/2)
(3,1,1,3) (+1,+1,-2)

… …
(3*,1,1,3*) (-1,-1,+2)
(1,2,2,3) (-1,-1/2,+3/2)
(3*,1,2,1) (-2,+3/2,+1/2)
(3*,2,1,1) (-2,0,+2)
(1,1,1,3) (-1,-2,+3)
(1,1,2,3*) (-2,+1/2,+3/2)
(1,1,1,1) (-3,0,+3)

Examples of states shared between two phases:

Serre 
duals

Integrable reps of SU(3)1 ⇥ SU(2)2 ⇥ SU(2)1 ⇥ SU(3)1



wedge coh’ degree SU(3)xSU(2)xSU(2)xSU(3) U(1)3

2 0 (1,1,1,6) (+1,-1,0)
3 0 (1,2,1,8) (0,0,0)
4 0 (1,1,1,6*) (-1,+1,0)
5 2 (1,1,1,6) (+1,-1,0)
6 2 (1,2,1,8) (0,0,0)
7 2 (1,1,1,6*) (-1,+1,0)

Non-shared states in            phase:r � 0

Serre 
duals

Matching 
rep’

• All states come in Serre dual pairs
• Rep’s are non-integrable — should not survive to IR

• States come in pairs with matching rep’s
(so cancel out of elliptic genera)

Non-integrable rep’ of SU(3)1 ⇥ SU(2)2 ⇥ SU(2)1 ⇥ SU(3)1



So far, I’ve compared chiral states in two phases of one GLSM, 
corresponding to 2 of the 3 geometries related by triality.

We can perform the same analysis in phases of other GLSM’s, 
describing geometries related by triality to the two above.

We find the same results:

• There is a set of states shared between all geometries related
by triality, falling in integrable representations

• There are non-shared states,
in non-integrable representations,
and which cancel out of elliptic genera.

So far, only discussed one example of a triple, 
but the same pattern appears in other examples….



We’ve seen that the between geometries that should flow to 
same fixed point, the chiral states don’t all match, 

but, 
the ones that don’t, also have nonintegrable reps, 

and make no net contribution to refined elliptic genera.

We believe that they get a mass and disappear from RG flow.

The fact that the remaining states are both 
• shared between phases, and

• in integrable reps of proposed IR symmetry algebras,
serves as a check of triality.



In hindsight, we should’ve expected this.

These (0,2) chiral rings do not have the same topological 
protection as (2,2) chiral rings, 

hence, 
in general (pairs of) states should be able to  

enter & leave RG flow.

However, within the (0,2) community, we’ve implicitly assumed 
that (0,2) chiral rings were somehow protected, 

and GGP’s triality provides clear counterexamples.



How in principle might these UV sheaf cohomology groups 
relate, in general, to the IR states?

In IR, expect states ~ Lie algebra cohomology.

How is that related?

We won’t pursue this in detail, but, 
want to observe that another flavor of BBW provides the 

missing link:

[roughly — correspondence incomplete]

H•(G/P, E⇠)� = H•(n, V�)⇠

p = (Levi) + n

� a representation of G
⇠ a representation of P

sheaf 
cohomology

Lie algebra 
cohomology

(W Lerche,  
private communication)



Math conjecture:

The shared states, the sheaf cohomology that survives to IR, 
should define some sort of `stable sheaf cohomology.’

Stable under `physics homotopy’ = RG flow

Conversely, in 2d physical theories with a continuous global 
symmetry, there is a weak test for a nontrivial IR limit:  

isotypic components of certain indices in nonintegrable 
representations should vanish.

Next, let’s switch gears and turn to moduli….



Brief overview of moduli

It was known historically that for large-radius het’ NLSM’s on 
the (2,2) locus, there were three classes of infinitesimal moduli:

Bundle moduli

Complex moduliH 1(X, )TX

Kahler moduliT *XH 1(X, )

H 1(X, )EndE

where, on (2,2) locus, E = TX

When the gauge bundle          ,  
the correct moduli counting is more complicated….

E ≠ TX



Brief overview of moduli

For Calabi-Yau (0,2) compactifications off the (2,2) locus, 
moduli are as follows:

H 1( where

0→ EndE TX→Q→ → 0
(Atiyah sequence)

There remained for a long time the question of moduli of  
non-Kahler compactifications….

(Anderson-Gray-Lukas-Ovrut, ‘10)

Kahler moduliT *XH 1(X, )

Q)

F( )



Brief overview of moduli

For non-Kahler (0,2) compactifications, 
in the formal              limit,′α → 0

(Melnikov-ES, ’11)
H 1(S) where

0→ EndE TX→Q→ → 0

0→ → S→ → 0T *X Q

Now, we also need     corrections….′α

F

H dH = 0

( )

( ),



Brief overview of moduli

H 1(S) where

0→ → S→ → 0T *X Q

0→EndE TX→Q→ → 0

Through first order in     ,  
the moduli are overcounted by

′α

(Anderson-Gray-ES ’14; de la Ossa-Svanes ’14)

⊕EndTX RF( ),

Green-SchwarzH( , )

Current state-of-the-art

Need to find correct counting, & extend to higher orders

on manifolds satisfying the     lemma.∂∂

Recent progress by e.g. Garcia-Fernandez, Rubio, Tipler ‘15



Brief overview of moduli

So far I’ve outlined infinitesimal moduli — marginal operators.

These can be obstructed by eg nonperturbative effects.

Dine-Seiberg-Wen-Witten ’86 observed that a single worldsheet 
instanton can generate a superpotential term obstructing def’s 

off (2,2) locus….

… but then Silverstein-Witten ’95, Candelas et al ’95, Basu-Sethi ’03, Beasley-
Witten ‘03 observed that for polynomial moduli in GLSM’s, the 

contributions of all pertinent worldsheet instantons cancel out.
— those moduli are unobstructed; math not well-understood.

Moduli w/o such a description can still be obstructed, see for 
example Aspinwall-Plesser ’11, Braun-Kreuzer-Ovrut-Scheidegger ‘07



Summary:

• Chiral states in 2d (0,2) NLSM’s

• Product structures in chiral rings in A/2, B/2 twists:

• Nonabelian GLSMs:

Gadde-Gukov-Putrov triality

quantum sheaf cohomology

Dualities in 2d and their geometry

Thank you for your time!

• Survey of moduli in non-Kahler cases


