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Over the last half dozen years, there’s been a tremendous 
amount of progress in perturbative string compactifications.

A few of my favorite examples:

Far too much to cover in one talk!  I’ll focus on just one….

• nonpert’ realizations of geometry (Pfaffians, double covers)
(Hori-Tong ’06, Caldararu et al ’07,…)

• perturbative GLSM’s for Pfaffians (Hori ’11, Jockers et al ’12,…)

• non-birational GLSM phases - physical realization of 
homological projective duality (Hori-Tong ’06, Caldararu et al ’07,  

Ballard et al ’12; Kuznetsov ’05-’06,…)

• examples of closed strings on noncommutative res’ns
(Caldararu et al ’07, Addington et al ’12, ES ’13)

• localization techniques: new GW & elliptic genus 
computations, role of Gamma classes, …

(Benini-Cremonesi ’12, Doroud et al ’12; Jockers et al ’12, Halverson et al ’13, Hori-Romo ’13, Benini et al ’13, ….)

• heterotic strings:  nonpert’ corrections, 2d dualities,  
non-Kahler moduli (many)



Today I’ll restrict to
• heterotic strings:  nonpert’ corrections, 2d dualities,  

non-Kahler moduli

My goal today is to give a survey of some of the results in (0,2) 
over the last six years or so, both new results as well as some 

older results to help provide background & context.

So, what will I discuss?…
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Review of quantum sheaf cohomology

Dualities in 2d
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Outline:

• (0,2) mirror symmetry

• Gauge dualities — Seiberg(-like) dualities
— corresponding geometry
— 2d tricks one can’t play in 4d

• Decomposition in 2d nonabelian gauge theories
Ex:  SU(2) = SO(3)+ + SO(3)-

Brief overview of moduli
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Review of quantum sheaf cohomology

Encodes nonperturbative corrections to charged matter 
couplings.

Example:  (2,2) compactification on CY 3-fold
Gromov-Witten invariants encoded in       couplings27

3

Off the (2,2) locus, Gromov-Witten inv’ts no longer relevant.
Mathematical GW computational tricks no longer apply.
No known analogue of periods, Picard-Fuchs equations.

New methods needed….
… and a few have been developed.

Quantum sheaf cohomology is the heterotic version of 
quantum cohomology — defined by space + bundle.

(Katz-ES ’04, ES ’06, Guffin-Katz ’07, ….)



Review of quantum sheaf cohomology

Quantum sheaf cohomology is the heterotic version of 
quantum cohomology — defined by space + bundle.

Ex:  ordinary quantum cohomology of Pn

![x] / (xn+1 − q)

Check:  When E=T, this becomes ![x, y] / (xn+1 − q1, yn+1 − q2 )

Compare: quantum sheaf cohomology of Pn × Pn
with bundle

0→O⊕O→
*
O(1,0)n+1⊕O(0,1)n+1→ E→ 0

where
*= Ax Bx

C!x D!x
⎡

⎣
⎢

⎤

⎦
⎥

is given by ![x, y] / ( det(Ax + By)− q1, det(Cx + Dy)− q2 )

homog’ coord’s on     ‘sx, !x Pn



Review of quantum sheaf cohomology

Ordinary quantum cohomology
= OPE ring of the A model TFT in 2d

The A model is obtained by twisting (2,2) NLSM along U(1)V

In a heterotic (0,2) NLSM, if detE* ≅ KX

then there is a nonanomalous U(1) we can twist along.

Result:  a pseudo-topological field theory, “A/2 model”

Quantum sheaf cohomology
= OPE ring of the A/2 model



Review of quantum sheaf cohomology
Quantum sheaf cohomology

= OPE ring of the A/2 model

When does that OPE ring close into itself?

(2,2) susy not required.

For a SCFT, can use combination of
• worldsheet conformal invariance
• right-moving N=2 algebra

to argue closure on patches on moduli space.
(Adams-Distler-Ernebjerg, ’05)



Review of quantum sheaf cohomology
Quantum sheaf cohomology

= OPE ring of the A/2 model

A model:
Operators: bi1!ip ı1!ıq

χ ı1!χ ıq!χ i1!χ ip ↔ H p,q (X)

A/2 model:
Operators: bı1!ıqa1!ap

ψ +
ı1!ψ +

ıqλ−
a1!λ−

ap ↔ H q (X,∧ p E*)

On the (2,2) locus, A/2 reduces to A.
For operators, follows from

H q (X,∧ pT *X)= H p,q (X)



Review of quantum sheaf cohomology
Quantum sheaf cohomology

= OPE ring of the A/2 model

〈O1!On 〉 = ω1X∫ ∧!∧ω n = top-form( )
X∫

A model: Classical contribution:

ω i ∈H
pi ,qi (X)

A/2 model: Classical contribution:
〈O1!On 〉 = ω1X∫ ∧!∧ω n

Again, a top form, so get a number.

Schematically:

ω1 ∧!∧ω n ∈H
top (X,∧ topE*) = Htop (X,KX )Now,

using the anomaly constraint detE* ≅ KX



Review of quantum sheaf cohomology

Example:  classical sheaf cohomology on P1 × P1

with gauge bundle E a deformation of the tangent bundle:

0→W *⊗O→
*
O(1,0)2 ⊕O(0,1)2

Z*
! "### $### → E→ 0

where *= Ax Bx
C!x D!x

⎡

⎣
⎢

⎤

⎦
⎥ homog’ coord’s on     ‘sx, !x P1

W =!2and

To make this more clear, let’s consider an

Operators counted by H 1(E*)= H 0 (W ⊗O)=W

n-pt correlation function is a map SymnH1(E*)=SymnW→H n (∧n E*)

OPE’s = kernel
Plan:  study map corresponding to classical corr’ f’n



Review of quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

with gauge bundle E a deformation of the tangent bundle:

0→W *⊗O→
*
O(1,0)2 ⊕O(0,1)2

Z*
! "### $### → E→ 0

where *= Ax Bx
C!x D!x

⎡

⎣
⎢

⎤

⎦
⎥ homog’ coord’s on     ‘sx, !x P1

W =!2and
Since this is a rk 2 bundle, classical sheaf cohomology 

defined by products of 2 elements of                                 .H 1(E*) = H 0 (W ⊗O)=W

0→∧2 E*→∧2 Z→ Z⊗W →Sym2W ⊗O→ 0

H 0 (Sym2W ⊗O)→H 2 (∧2E*) = corr’ f’nSo, we want to study map

This map is encoded in the resolution



Review of quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

0→∧2 E*→∧2 Z→ Z⊗W →Sym2W ⊗O→ 0

Break into short exact sequences:

0→∧2 E*→∧2 Z → S1→ 0
→ Z⊗W →Sym2W ⊗O→ 00→ S1

Examine second sequence:

H 0 (Z⊗W )→H 0 (Sym2W⊗O)→
δ
H 1(S1)→H 1(Z⊗W )

Since Z is a sum of O(-1,0)’s, O(0,-1)’s,
0 0

hence H 0 (Sym2W ⊗O)→
~
H 1(S1) is an iso.δ :

induces

Next, consider the other short exact sequence at top….



Review of quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

0→∧2 E*→∧2 Z→ Z⊗W →Sym2W ⊗O→ 0

Break into short exact sequences:

0→∧2 E*→∧2 Z → S1→ 0

→ Z⊗W →Sym2W ⊗O→ 00→ S1

Examine other sequence:

H 1(∧2Z )→H 1(S1)→
δ
H 2 (∧2E*)→H 2 (∧2Z )

Since Z is a sum of O(-1,0)’s, O(0,-1)’s,
H 2 (∧2Z )= 0 but H 1(∧2Z )=!⊕!
and so H 1(S1)→H 2 (∧2E*) has a 2d kernel.

Now, assemble the coboundary maps….

H 0 (Sym2W ⊗O)→
~
H 1(S1)δ :

δ :

0
induces



Review of quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

0→∧2 E*→∧2 Z→ Z⊗W →Sym2W ⊗O→ 0

Now, assemble the coboundary maps….

A classical (2-pt) correlation function is computed as
H 0 (Sym2W ⊗O)→

~
H 1(S1)H 1(S1)→H 2 (∧2E*)

δ δ

where the right map has a 2d kernel, which one can show is 
generated by

det(Aψ + B !ψ ) det(Cψ + D !ψ ),
where A, B, C, D are four matrices defining the def’ E, 

and         correspond to elements of a basis for W.ψ , !ψ

Classical sheaf cohomology ring:
![ψ , "ψ ] / det(Aψ + B "ψ ),det(Cψ + D "ψ )( )



Review of quantum sheaf cohomology
Quantum sheaf cohomology

= OPE ring of the A/2 model

Instanton sectors have the same form, 
except X replaced by moduli space M of instantons, 
E replaced by induced sheaf F over moduli space M.

Must compactify M, 
and extend F over compactification divisor.

∧ topE* ≅ KX

ch2(E)= ch2(TX) }⇒
GRR

∧ topF* ≅ KM

Within any one sector, can follow the same method just 
outlined….



Review of quantum sheaf cohomology
In the case of our example, 

one can show that in a sector of instanton degree (a,b), 
the `classical’ ring in that sector is of the form

Sym•W/ (Qa+1, !Qb+1)
where Q = det(Aψ + B !ψ ) !Q = det(Cψ + D !ψ ),

Now, OPE’s can relate correlation functions in different 
instanton degrees, and so, should map ideals to ideals.

To be compatible with those ideals,
〈O〉a,b = q

′a −a !q ′b −b 〈OQ ′a −a !Q ′b −b 〉 ′a , ′b

for some constants q, !q => OPE’s Q = q, !Q = !q

— quantum sheaf cohomology rel’ns



Review of quantum sheaf cohomology

General result:

For any toric variety, and any def’ E of its tangent bundle,

0→W * ⊗O→
*
⊕O(!qi )

Z*
"#$→E → 0

the chiral ring is

∏α (detM (α ) )
Qα
a

= qa
where the M’s are matrices of chiral operators built from *.

(Donagi, Guffin, Katz, ES, ’11)



Review of quantum sheaf cohomology

So far, I’ve outlined mathematical computations of quantum 
sheaf cohomology, but GLSM-based methods also exist:

• Quantum cohomology  ( (2,2) ):
• Quantum sheaf cohomology  ( (0,2) ):

Morrison-Plesser ‘94

McOrist-Melnikov ’07, ‘08

Briefly, for (0,2) case:

One computes quantum corrections to effective action of form

Leff = d∫ θ + Υa
a
∑ log ∏α (detM (α ) )

Qα
a

/ qa⎡
⎣

⎤
⎦  

detM (α )( )Qα
a

α
∏ = qafrom which one derives

— these are q.s.c. rel’ns — match math’ computations



Review of quantum sheaf cohomology

State of the art:  computations on toric varieties

To do:  compact CY’s

Intermediate step:  Grassmannians (work in progress)

Briefly, what we need are better computational methods.

Conventional GW tricks seem to revolve around idea that A 
model is independent of complex structure, 

not necessarily true for A/2.
• McOrist-Melnikov ’08 have argued an analogue for A/2
• Despite attempts to check (Garavuso-ES ‘13),

still not well-understood



Review of quantum sheaf cohomology

Dualities in 2d

Outline:

• (0,2) mirror symmetry

• Gauge dualities — Seiberg(-like) dualities
— corresponding geometry
— 2d tricks one can’t play in 4d

• Decomposition in 2d nonabelian gauge theories
Ex:  SU(2) = SO(3)+ + SO(3)-

Brief overview of moduli



( (0,2) susy )(0,2) mirror symmetry

Nonlinear sigma models with (0,2) susy defined by
space   , with gauge bundle E→ XX

Let’s begin our discussion of dualities with a review of 
progress on a conjectured generalization of mirror symmetry:   

(0,2) mirrors.

(0,2) mirror defined by space Y, w/ gauge bundle F.

A/2( X, E )  =  B/2( Y, F )
H p (X,∧q E*)= H p (Y ,∧q F)

(moduli)  =  (moduli)

dim X  =  dim Y
rk E  =  rk F

When E=TX, should reduce to ordinary mirror symmetry.



( (0,2) susy )(0,2) mirror symmetry

Numerical evidence:

h1(E)− h1(E*)

h1(E)+ h1(E*)

Horizontal:

Vertical:

(E rank 4)
(Blumenhagen-Schimmrigk-Wisskirchen, !

NPB 486 (’97) 598-628)



( (0,2) susy )(0,2) mirror symmetry

Constructions include:

• Adams-Basu-Sethi ’03 repeated Hori-Vafa-Morrison-Plesser-style GLSM 
duality in (0,2)

• Melnikov-Plesser ’10 extended Batyrev’s construction & monomial-
divisor mirror map to include def’s of tangent bundle, for 

special (‘reflexively plain‘) polytopes

• Blumenhagen-Sethi ’96 extended Greene-Plesser orbifold 
construction to (0,2) models — handy but only gives special 

cases

Progress, but still don’t have a general construction.



Gauge dualities ( (0,2) & (2,2) susy )

So far we’ve discussed dualities that act nontrivially on target-
space geometries.

Next:  gauge dualities in 2d  
— different gauge theories which flow to same IR fixed point.

Such dualities are of long-standing interest in QFT, 
and there has been much recent interest in 2d dualities:   

Hori ’11, Benini-Cremonesi ’12, Gadde-Gukov-Putrov ’13, Kutasov-Lin ’13, Jia-ES-Wu ’14, …

This not only helps explain why these dualities work in 2d, 
but also implies a procedure to generate examples 

(at least for CY, Fano geometries) …..

In 2d, we’ll see dualities can at least sometimes be understood 
as different presentations of same geometry.



Gauge dualities ( (2,2) susy )

U(k) gauge group, 
matter:  n chirals in fund’ k, n>k,  

                    A chirals in antifund’ k*, A<n

= Tot (Q*)A →G(n-k,n)( )

U(n-k) gauge group, 
matter:  n chirals     in fund’ k,  

                  A chirals P in antifund’ k*, 
         nA neutral chirals M,  
superpotential:  W = M    P

Φ

Φ

Seiberg

0→ S→
Φ
On →Q→ 0Build physics for RHS using

Example:

Benini-Cremonesi ’12

So, 2d analogue of Seiberg duality has geometric description.

RG

NLSM on Tot SA →G(k,n)( )
RG

= (!kn ×!kA ) / /GL(k)
RG

…
RG

…

& discover the upper RHS.



Gauge dualities ( (2,2) susy )

Our next example will be constructed from

G(2,4) degree 2 hypersurface in P5=

Dualities between gauge theories are of significant interest in 
the physics community, as they can be used to extract 

otherwise inaccessible information.

Strategy:  use easy math to make physics predictions.



Abelian/nonabelian dualities ( (2,2) susy )

U(2) gauge theory, 
matter:  4 chirals    in 2φi

U(1) gauge theory, 
6 chirals zij = -zji, i,j=1…4, of charge +1, 

one chiral P of charge -2, 
superpotential

W = P(z12 z34 - z13 z24 + z14 z23)

The physical duality implied at top relates abelian & 
nonabelian gauge theories, which in 4d for ex would be 

surprising.

= !2⋅4 / /GL(2) = {z12z34 − z13z24 + z14z23}⊂!
6 / /!×

G(2,4) degree 2 hypersurface in P5=

RG RG

RG
…



Abelian/nonabelian dualities ( (2,2) susy )

Compare symmetries: GL(4) action
φi
α !Vi

jφ j
α zij !Vi

kVj
ℓzkℓ

Relation: zij= εαβφi
αφ j

β

Chiral rings, anomalies, Higgs moduli space match 
automatically.

Can also show elliptic genera match, applying computational 
methods of Benini-Eager-Hori-Tachikawa ’13, Gadde-Gukov ‘13.

U(2) gauge theory, 
matter:  4 chirals    in 2φi

U(1) gauge theory, 
6 chirals zij = -zji, i,j=1…4, of charge +1, 

one chiral P of charge -2, 
superpotential

W = P(z12 z34 - z13 z24 + z14 z23)

Consistency checks:



Abelian/nonabelian dualities ( (2,2) susy )

This little game is entertaining, 
but why’s it useful ?

Standard physics methods rely on matching global 
symmetries and corresponding ’t Hooft anomalies between 

prospective gauge duals.

However, generic superpotentials break all symmetries.

Identifying gauge duals as different presentations of the same 
geometry allows us to construct duals when standard physics 

methods do not apply.



Abelian/nonabelian dualities ( (2,2) susy )

A simple set of examples in which global symmetry broken:
G(2,4)[d1,d2,!]= P5[2,d1,d2,!]

U(1) gauge theory, 
6 chirals zij = -zji, i,j=1…4, of charge +1, 

one chiral P of charge -2, 
chirals Pa of charge -da, 

superpotential

U(2) gauge theory, 
matter:  4 chirals    in 2!
chirals pa of charge -da 

under det U(2) 
superpotential

φi

W = pa
a
∑ fa (εαβφi

αφ j
β ) W = P(z12z34 − z13z24 + z14z23)+ Pa

a
∑ fa (zij )

εαβφi
αφ j

β = zij



( (0,2) susy )Abelian/nonabelian dualities

G(2,4)[d1,d2,!]= P5[2,d1,d2,!]
Let’s build on the previous example

by extending to heterotic cases: describe space + bundle.
Example:

Bundle 0→ E→⊕8 O(1,1)→O(2,2)⊕2 O(3,3)→ 0
on the CY G(2,4)[4].

U(2) gauge theoryDescribed by

4 chirals in fundamental
1 Fermi in (-4,-4) (hypersurface)
8 Fermi’s in (1,1) (gauge bundle E)
1 chiral in (-2,-2) (gauge bundle E)
2 chirals in (-3,-3) (gauge bundle E)

plus superpotential

rep’ of U(2)



( (0,2) susy )Abelian/nonabelian dualities

Bundle
0→ E→⊕8 O(1,1)→O(2,2)⊕2 O(3,3)→ 0

on the CY G(2,4)[4].

U(2) gauge theory
4 chirals in fundamental
1 Fermi in (-4,-4) (hypersurface)
8 Fermi’s in (1,1) (gauge bundle E)
1 chiral in (-2,-2) (gauge bundle E)
2 chirals in (-3,-3) (gauge bundle E)

plus superpotential

Bundle
0→ E→⊕8 O(1)→O(2)⊕2 O(3)→ 0

on the CY P5[2,4]

U(1) gauge theory
6 chirals charge +1

2 Fermi’s charge -2, -4
8 Fermi’s charge +1
1 chiral charge -2
2 chirals charge -3
plus superpotential

• both satisfy anomaly cancellation • elliptic genera match

RGRG

=



Gadde-Gukov-Putrov triality ( (0,2) susy )

SA ⊕ (Q*)2k+A−n →G(k,n) (S*)A ⊕ (Q*)n →G(k,2k + A − n)

(Q*)A ⊕ S2k+A−n →G(n − k,n) (Q*)n ⊕ (S*)2k+A−n →G(n − k,A)

Sn ⊕ (Q*)A →G(A − n + k,2k + A − n) (S*)n ⊕ (Q*)2k+A−n →G(A − n + k,A)

(Q*)n ⊕ S A →G(k,2k + A − n) (Q)2k+A−n ⊕ SA →G(k,n)

=

=

=

phase

phase

phase

For brevity, I’ve omitted writing out the (0,2) gauge theory.

Utilizes another duality: CFT(X,E) = CFT(X,E*)

(’13)

bundle space



Further examples ( (2,2) susy )

Start with standard fact:

G(2,n) = rank 2 locus of nxn matrix A over P
n
2

⎛
⎝⎜

⎞
⎠⎟
−1

A(zij )=
z11 = 0
z21 = −z12
z31 = −z13

z12
z22 = 0
z32 = −z23

z13
z23

z33 = 0
! ! !

!
!
!
!

[ ]



Further examples ( (2,2) susy )

U(2) gauge theory,  
n chirals in fundamental

U(n-2)xU(1) gauge theory, 
n chirals X in fundamental of U(n-2), 

n chirals P in antifundamental of U(n-2), 
(n choose 2) chirals zij = - zji  

           each of charge +1 under U(1), 
W = tr PAX

G(2,n) = rank 2 locus of nxn matrix A over P
n
2

⎛
⎝⎜

⎞
⎠⎟
−1

A(zij )=
z11 = 0
z21 = −z12
z31 = −z13

z12
z22 = 0
z32 = −z23

z13
z23

z33 = 0
! ! !

!
!
!
!

[ ]
In this fashion, straightforward to generate examples..…

RGRG

(using description of Pfaffians of  
Hori ‘11, Jockers et al ’12)



Dualities ( (0,2) & (2,2) susy )

How do these gauge dualities relate to (0,2) mirrors?

As we’ve seen, gauge dualities often relate different 
presentations of the same geometry, 

whereas (0,2) mirrors exchange different geometries.

Existence of (0,2) mirrors seems to imply that there ought to 
exist more `exotic’ gauge dualities,  
that present different geometries.

We’ve just used math to make predictions for physics. 
Next, we’ll turn that around,  

and use physics to make predictions for math….



Decomposition

In a 2d orbifold or gauge theory, 
if a finite subgroup of the gauge group acts trivially on all 

matter, the theory decomposes as a disjoint union.
(Hellerman et al ’06)

Ex:
On LHS, the      acts triv’ly on X, 

hence there are dim’ zero twist fields. 
Projection ops are lin’ comb’s of dim 0 twist fields.

!2

CFT([X/!2 ]) = CFT X X⨿( )

Ex: CFT([X/D4 ]) where                acts trivially on X!2 ⊂ D4

= CFT [X/!2 ×!2 ]⨿ [X/!2 ×!2 ]d.t.( )
D4 /!2 =!2 ×!2where

This is what’s meant by `decomposition’….



Decomposition

Decomposition is also a statement about mathematics. 
Dictionary:

2d Physics Math
D-brane Derived category

Gauge theory Stack
Gauge theory w/ trivially 

acting subgroup Gerbe

Universality class of 
renormalization group flow Categorical equivalence



Decomposition

Decomposition is also a statement about mathematics. 
Dictionary:

2d Physics Math
D-brane Derived category

Gauge theory Stack
Gauge theory w/ trivially 

acting subgroup Gerbe

Universality class of 
renormalization group flow Categorical equivalence

Decomposition is a statement about physics of strings on 
gerbes, summarized in the decomposition conjecture….



Decomposition

Decomposition conjecture:
(Hellerman et al ’06)

(version for banded gerbes)

CFT(G-gerbe on X)=CFT (X,B)
Ĝ
⨿⎛⎝⎜

⎞
⎠⎟

where the B field is determined by the image of

H 2 (X,Z(G)) →
Z (G )!U (1)

H 2 (X,U(1))

string  
on 

gerbe

string 
on 

disjoint union 
of spaces

characteristic 
class flat B field

Applications:
• predictions for GW inv’ts, checked by H H Tseng et al ’08-‘10
• understand GLSM phases, via giving a physical realization of Kuznetsov’s   

homological projective duality for quadrics (Caldararu et al ’07, Hori ’11,  
Halverson et al ’13…) 

Consistent with:

• D-branes, K theory, sheaves on gerbes

• multiloop orbifold partition f’ns
• q.c. ring rel’ns as derived from GLSM’s



Decomposition

CFT(G-gerbe on X)=CFT (X,B)
Ĝ
⨿⎛⎝⎜

⎞
⎠⎟

Checking this statement in orbifolds involved comparing e.g. 
multiloop partition functions, state spaces, D-branes, …

In gauge theories, there are further subtleties.
Example:

Ordinary        model = U(1) gauge theory with n+1 chiral superfields, 
     each of charge +1

!Pn

Gerby        model = U(1) gauge theory with n+1 chiral superfields, 
        each of charge +k, k>1

!Pn

Require physics of charge k > 1 different from charge 1  
— but how can multiplying the charges by a factor change anything?



Decomposition

For physics to see gerbes, there must be a difference, 
but why isn’t this just a convention? 

How can physics see this?

Answer:  nonperturbative effects
Noncompact worldsheet:  distinguish via    periodicityθ

Compact worldsheet:  define charged field via specific bundle
(Adams-Distler-Plesser, Aspen ’04)

Require physics of charge k > 1 different from charge 1  
— but how can multiplying the charges by a factor change anything?

Decomposition has been extensively checked for abelian 
gauge theories and orbifolds;  

nonabelian gauge theories much more recent….



Decomposition

Extension of decomposition to nonabelian gauge theories:

Since 2d gauge fields don’t propagate, 
analogous phenomena should happen in nonabelian gauge 

theories with center-invariant matter.

Proposal:

For G semisimple, with center-inv’t matter, 
G gauge theories decompose into a sum of theories with 

variable discrete theta angles:

(ES, ’14)

Ex:   SU(2)  =  SO(3)+  +  SO(3)-

— SO(3)’s have different discrete theta angles



Decomposition

Extension of decomposition to nonabelian gauge theories:

Aside:  discrete theta angles

Consider 2d gauge theory, group G = !G /K
!G compact, semisimple, simply-connected
K finite subgroup of center of !G

λ(w)

The theory has a degree-two   -valued char’ classK w
For   any character of   , can add a term to the actionKλ

— discrete theta angles, classified by characters

Ex:                                  has 2 discrete theta anglesSO(3) = SU(2) /!2

(Gaiotto-Moore-Neitzke ’10, !
Aharony-Seiberg-Tachikawa ’13, Hori ‘94) 



Decomposition

Ex:   SU(2)  =  SO(3)+  +  SO(3)-

Let’s see this in pure nonsusy 2d QCD.

Z(SU(2))= (dimR)2−2g
R
∑ exp(−AC2 (R)) Sum over all SU(2) reps

Z(SO(3)+ )= (dimR)2−2g
R
∑ exp(−AC2 (R)) Sum over all SO(3) reps

Z(SO(3)− )= (dimR)2−2g
R
∑ exp(−AC2 (R)) Sum over all SU(2) reps 

that are not SO(3) reps

(Tachikawa ’13)

Result: Z(SU(2)) = Z(SO(3)+ )+ Z(SO(3)− )

(Migdal, Rusakov)



Decomposition

More general statement of decomposition for 2d nonabelian 
gauge theories with center-invariant matter:

For G semisimple, K a finite subgp of center of G,

G = (G /K )λ
λ∈K̂
∑

indexes discrete  
theta angles

Other checks include 2d susy partition functions, 
utilizing Benini-Cremonesi ‘12, Doroud et al ’12; 

arguments there revolve around cocharacter lattices.



Review of quantum sheaf cohomology

Dualities in 2d

Outline:

• (0,2) mirror symmetry

• Gauge dualities — Seiberg(-like) dualities
— corresponding geometry
— 2d tricks one can’t play in 4d

• Decomposition in 2d nonabelian gauge theories
Ex:  SU(2) = SO(3)+ + SO(3)-

Brief overview of moduli



Brief overview of moduli

It was known historically that for large-radius het’ NLSM’s on 
the (2,2) locus, there were three classes of infinitesimal moduli:

Bundle moduli

Complex moduliH 1(X, )TX

Kahler moduliT *XH 1(X, )

H 1(X, )EndE

where, on (2,2) locus, E = TX

When the gauge bundle          ,  
the correct moduli counting is more complicated….

E ≠ TX



Brief overview of moduli

For Calabi-Yau (0,2) compactifications off the (2,2) locus, 
moduli are as follows:

H 1( where

0→ EndE TX→Q→ → 0
(Atiyah sequence)

There remained for a long time the question of moduli of  
non-Kahler compactifications….

(Anderson-Gray-Lukas-Ovrut, ‘10)

Kahler moduliT *XH 1(X, )

Q)

F( )



Brief overview of moduli

For non-Kahler (0,2) compactifications, 
in the formal              limit,′α → 0

(Melnikov-ES, ’11)
H 1(S) where

0→ EndE TX→Q→ → 0

0→ → S→ → 0T *X Q

Now, we also need     corrections….′α

F

H dH = 0

( )

( ),



Brief overview of moduli

H 1(S) where

0→ → S→ → 0T *X Q

0→EndE TX→Q→ → 0

Through first order in     ,  
the moduli are overcounted by

′α

(Anderson-Gray-ES ’14; de la Ossa-Svanes ’14)

⊕EndTX RF( ),

Green-SchwarzH( , )

Current state-of-the-art

WIP to find correct counting, & extend to higher orders

on manifolds satisfying the     lemma.∂∂



Brief overview of moduli

So far I’ve outlined infinitesimal moduli — marginal operators.

These can be obstructed by eg nonperturbative effects.

Dine-Seiberg-Wen-Witten ’86 observed that a single worldsheet 
instanton can generate a superpotential term obstructing def’s 

off (2,2) locus….

… but then Silverstein-Witten ’95, Candelas et al ’95, Basu-Sethi ’03, Beasley-
Witten ‘03 observed that for polynomial moduli in GLSM’s, the 

contributions of all pertinent worldsheet instantons cancel out.
— those moduli are unobstructed; math not well-understood.

Moduli w/o such a description can still be obstructed, see for 
example Aspinwall-Plesser ’11, Braun-Kreuzer-Ovrut-Scheidegger ‘07



Review of quantum sheaf cohomology

Dualities in 2d

Summary:

• (0,2) mirror symmetry

• Gauge dualities — Seiberg(-like) dualities
— corresponding geometry
— 2d tricks one can’t play in 4d

• Decomposition in 2d nonabelian gauge theories
Ex:  SU(2) = SO(3)+ + SO(3)-

Brief overview of moduli


