Decomposition and the Gross-Taylor string

Queen Mary

October 26, 2023

Eric Sharpe, Virginia Tech

An overview of T. Pantev, ES, arXiv:2307.08729

The purpose of this talk today is to reconcile two different perspectives on two-dimensional pure Yang-Mills theories:

1) Decomposition
(Hellerman, Henriques, Pantev, ES, Ando 'o6; ...
..., Nguyen, Tanizaki, Unsal '21, ...)
Two-dimensional pure Yang-Mills $=\oplus_{R}($ Trivial (invertible) QFTs)
2) Gross-Taylor expansion (Gross, Taylor '93; Cordes, Moore, Ramgoolam '94, ...)

Two-dimensional pure Yang-Mills $=$ target-space field theory of a string field theory

Executive summary:
Decomposition appears to predict a one-form symmetry in the Gross-Taylor string theory.

Plan of the talk:

1) Review decomposition

Focusing on examples of S_{n} orbifolds \& 2d pure YM
2) Gross-Taylor and two puzzles Logic of Gross-Taylor:

First rewrite pure YM partition function as a sum of S_{n} orbifolds, then, interpret those orbifolds as branched covers and then as SFT.

We'll see that the S_{n} orbifolds interlace with decomposition perfectly, but two puzzles arise in the branched covers/SFT interpretation.
3) Proposed resolution

The branched cover/SFT interpretation will also be compatible if the GT string is required to have a novel symmetry.

A short review of decomposition
In $d>1$ spacetime dimensions,
if a local quantum field theory has a global $(d-1)$-form symmetry, it is equivalent to a disjoint union of other local QFT's, known in this context as `universes.'

We call this decomposition.

(2d: Hellerman et al 'o6, ...;
d>2: Tanizaki-Unsal '19, Cherman-Jacobson '20, ...)

When this happens, we say the QFT `decomposes.'
Decomposition has been explored in many examples, as I'll quickly review.
Today: understand decomposition in the Gross-Taylor expansion of 2d pure YM.
More on decomposition...

What does it mean for one local QFT to be a sum of other local QFTs?

1) Existence of projection operators

The theory contains topological local operators Π_{i} such that

$$
\Pi_{i} \Pi_{j}=\delta_{i, j} \Pi_{j} \quad \sum_{i} \Pi_{i}=1 \quad\left[\Pi_{i}, \mathcal{O}\right]=0
$$

Operators Π_{i} simultaneously diagonalizable; state space $=\mathscr{H}=\bigoplus_{i} \mathscr{H}_{i}$
Correlation functions:

$$
\left\langle\mathcal{O}_{1} \cdots \mathcal{O}_{m}\right\rangle=\sum_{i}\left\langle\Pi_{i} \mathcal{O}_{1} \cdots \mathcal{O}_{m}\right\rangle=\sum_{i}\left\langle\left(\Pi_{i} \mathcal{O}_{1}\right) \cdots\left(\Pi_{i} \mathcal{O}_{m}\right)\right\rangle=\sum_{i}\left\langle\tilde{\mathcal{O}}_{1} \cdots \tilde{\mathcal{O}}_{m}\right\rangle_{i}
$$

2) Partition functions decompose

$$
Z=\sum_{\text {states }} \exp (-\beta H)=\sum_{i} \sum_{\substack{\text { (on a connected spacetime) }}} \exp \left(-\beta H_{i}\right)=\sum_{i} Z_{i}
$$

Example:

S'pose have G-gauge theory, G semisimple, with finite central $K \subset G$ acting trivially.

Statement of decomposition (in this example):
QFT $\left(G\right.$-gauge theory) $=\coprod_{\text {char's } \hat{K}}$ QFT (G / K-gauge theory $\mathrm{w} /$ discrete theta angles)
Example: pure $S U(2)$ gauge theory $=$ sum $S O(3)_{+}+S O(3)_{-}$pure gauge theories where \pm denote discrete theta angles $\left(\mathrm{w}_{2}\right)$

Perturbatively, the $S U(2), S O(3)_{ \pm}$theories are identical - differences are all nonperturbative.

Example:

S'pose have G-gauge theory, G semisimple, with finite central $K \subset G$ acting trivially. As discussed previously, has 1-form symmetry (specifically, $B K$).

Statement of decomposition (in this example):
$\operatorname{QFT}(G-$ gauge theory $)=\coprod_{\text {char's } \hat{K}} \operatorname{QFT}(G / K$-gauge theory $\mathrm{w} /$ discrete theta angles $)$
Example: pure $S U(2)$ gauge theory $=$ sum $S O(3)_{+}+S O(3)_{-}$pure gauge theories where \pm denote discrete theta angles $\left(\mathrm{w}_{2}\right)$
$S U(2)$ instantons (bundles) $\subset S O(3)$ instantons (bundles)
The discrete theta angles weight the non- $S U(2) S O(3)$ instantons so as to cancel out of the partition function of the disjoint union.

Summing over the $S O(3)$ theories projects out some instantons, giving the $S U(2)$ theory.

Example:

S'pose have G-gauge theory, G semisimple, with finite central $K \subset G$ acting trivially. As discussed previously, has 1-form symmetry (specifically, $B K$).

Statement of decomposition (in this example):

$$
\text { QFT }(G-\text { gauge theory })=\coprod_{\text {char's } \hat{K}} \text { QFT }(G / K-\text { gauge theory } \mathrm{w} / \text { discrete theta angles })
$$

Formally, the partition function of the disjoint union can be written projection operator

$$
\left.Z=\underset{\theta \in \hat{\sum_{\theta \in \hat{K}}} \int[D A] \exp (-S) \exp \left[\theta \int \omega_{2}(A)\right]}{\text { Disjoint union }} \underset{\left(\sum_{\theta \in \hat{K}} \exp \left[\theta \int \omega_{2}(A)\right]\right.}{ }\right)
$$

where we have moved the summation inside the integral.
This is an interference effect between universes: multiverse interference

Decomposition in 2d gauge theories

$$
Z=\sum_{\theta \in \hat{K}} \int[D A] \exp (-S) \exp \left[\theta \int \omega_{2}(A)\right] \quad \underset{\text { Disjoint union }}{ }\left[\begin{array}{l}
\text { projection operator } \\
\sum_{\theta \in \hat{K}} \exp \left[\theta \int \omega_{2}(A)\right] \exp (-S)
\end{array}\right)
$$

One effect is a projection on nonperturbative sectors:
projection operator
$\sum_{\theta \in \hat{K}}^{\sum_{\text {Disjoint union }} \int[D A] \exp (-S) \exp \left[\theta \int \omega_{2}(A)\right]}=\int[D A] \exp (-S)\left(\sum_{\theta \in \hat{K}} \exp \left[\theta \int \omega_{2}(A)\right]\right)$

> Disjoint union of several QFTs / universes
$=\quad$ 'One' QFT with a restriction on nonperturbative sectors $=$ `multiverse interference’

Schematically, two theories combine to form a distinct third:

$$
\begin{aligned}
& \text { universe } \\
& \left(S O(3) _\right)
\end{aligned}
$$

multiverse interference effect
($S U(2)$)

Before going on, let's quickly check these claims for pure $S U(2)$ Yang-Mills in 2d.

The partition function Z, on a Riemann surface of genus g, is
(Migdal, Rusakov)

$$
\begin{array}{ll}
Z(S U(2))=\sum_{R}(\operatorname{dim} R)^{2-2 g} \exp \left(-A C_{2}(R)\right) & \text { Sum over all SU(2) reps } \\
Z\left(S O(3)_{+}\right)=\sum_{R}(\operatorname{dim} R)^{2-2 g} \exp \left(-A C_{2}(R)\right) & \text { Sum over all } \mathrm{SO}(3) \text { reps }
\end{array}
$$

(Tachikawa '13)

$$
Z\left(S O(3)_{-}\right)=\sum_{R}(\operatorname{dim} R)^{2-2 g} \exp \left(-A C_{2}(R)\right)
$$

Sum over all SU(2) reps that are not $\mathrm{SO}(3)$ reps

Result: $Z(S U(2))=Z\left(S O(3)_{+}\right)+Z\left(S O(3)_{-}\right) \quad$ as expected.
(Later we'll review a more extreme decomposition of 2d pure YM, which we'll compare to GT.)

Since 2005, decomposition has been checked in many examples in many ways. Examples:

- GLSM's: mirrors, quantum cohomology rings (Coulomb branch)
(T Pantev, ES '05; Gu et al '18-'20)
- Orbifolds: partition f'ns, massless spectra, elliptic genera (T Pantev, ES 'o5; Robbins et al '21)
- Open strings, K theory (Hellerman et al hep-th/o6o6o34)

This list is

- Susy gauge theories w/ localization
(ES 1404.3986)
incomplete;
apologies to
- Nonsusy pure Yang-Mills ala Migdal
(ES '14; Nguyen, Tanizaki, Unsal '21)
those not listed.
- Adjoint QCD_{2} (Komargodski et al '20) - Numerical checks (lattice gauge thy) (Honda et al '21)
- Versions in d-dim'l theories w/ (d-1)-form symmetries (Tanizaki, Unsal, '19; Cherman, Jacobson '20)

Applications include:

- Sigma models with target stacks \& gerbes (T Pantev, ES 'o5)
- Predictions for Gromov-Witten theory (checked by H-H Tseng, Y Jiang, E Andreini, etc starting 'o8)
- Nonperturbative constructions of geometries in GLSMs (Caldararu et al 0709.3855, Hori ' $11, \ldots$
- Elliptic genera (Eager et al'20) - Anomalies in orbifolds (Robbins et al '21)
..., Romo et al '21)
Today: decomposition in the Gross-Taylor string....

Two examples of decomposition will play an important role in this talk:

- 2d pure Yang-Mills (decomposing to invertibles)
- 2d Dijkgraaf-Witten theory

The role of the first is clear: we're trying to reconcile decomposition of 2d pure Yang-Mills with its description ala Gross-Taylor.

Now, part of the Gross-Taylor story is a rewriting of the 2 d pure YM partition function as a sum of 2d Dijkgraaf-Witten theories, so its decomposition will also play a role.

We'll discuss each in turn.

Example: 2d pure Yang-Mills (decomposing to invertibles)
Recall from (Migdal '75, Drouffe '78, Lang et al '81, Menotti et al ' 81 , Rusakov '9o) that 2d pure Yang-Mills has been solved exactly.

The partition function $Z(\Sigma)$ on a closed Riemann surface Σ of genus p and area A is

$$
Z(\Sigma)=\sum_{R}(\operatorname{dim} R)^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2} C_{2}(R)\right)
$$

where
R is an irrep of the gauge group
$C_{2}(R)$ is the quadratic Casimir of R

Example: 2d pure Yang-Mills (decomposing to invertibles)

Recall from (Migdal '75, Drouffe '78, Lang et al '81, Menotti et al '81, Rusakov '90) that 2d pure Yang-Mills has been solved exactly.

The partition function $Z(\Sigma)$ on a closed Riemann surface Σ of genus p and area A is

$$
Z(\Sigma)=\sum_{R}(\operatorname{dim} R)^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2} C_{2}(R)\right)
$$

Decomposes into theories associated with irreps R :
$Z(\Sigma)=\sum_{R} Z_{R} \quad Z_{R}=(\operatorname{dim} R)^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2} C_{2}(R)\right)$
(It can also decompose along center symmetries, but the decomposition along irreps will be the focus of the rest of this talk.)

How to interpret those constituent theories?...

Example: 2d pure Yang-Mills (decomposing to invertibles)
2d pure YM is a disjoint sum of trivial ('invertible') field theories, associated to the irreps R :
(Nguyen, Tanizaki, Unsal '21)

$$
Z(\Sigma)=\sum_{R} Z_{R} \quad Z_{R}=(\operatorname{dim} R)^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2} C_{2}(R)\right)
$$

The constituent invertible field theories are \sim classical theories, with 1 d Fock space (only vacuum), indexed by counterterms:

$$
S=\int_{\Sigma} \sqrt{-g}(a R+b) \quad Z=\exp (a \chi(\Sigma)+b \cdot \text { Area })
$$

so the universe associated to irrep R (partition function Z_{R})
has $\quad a(R)=\ln \operatorname{dim} R, \quad b(R)=-\frac{g_{Y M}^{2}}{2} C_{2}(R)$
when interpret as invertible field theory.
Next: Dijkgraaf-Witten...

Example: 2d Dijkgraaf-Witten theory
This is a fancy name for an orbifold of a point: [point/G] for G finite
In cases w/o discrete torsion, operators are twist fields associated to conjugacy classes.
Correlation functions: On a Riemann surface Σ of genus p,

$$
\left\langle\mathcal{O}_{1} \cdots \mathcal{O}_{n}\right\rangle=\frac{1}{|G|} \sum_{s_{1}, t_{1}, \cdots, s_{p}, t_{p} \in G} \delta\left(\mathcal{O}_{1} \cdots \mathcal{O}_{n} \prod_{i=1}^{p} s_{i} t_{i} s_{i}^{-1} t_{i}^{-1}\right)
$$

$$
\text { where } \quad \delta(g)= \begin{cases}1 & g=1 \\ 0 & g \neq 1\end{cases}
$$

For example, the partition function is

$$
Z=\frac{1}{|G|} \sum_{s_{1}, t_{1}, \cdots, s_{p}, t_{p} \in G} \delta\left(\prod_{i=1}^{p} s_{i} t_{i} s_{i}^{-1} t_{i}^{-1}\right)
$$

How does it decompose?

Example: 2d Dijkgraaf-Witten theory

This theory also decomposes into a disjoint sum of trivial ('invertible') field theories, associated to the irreps r.

Projection operators P_{r} exist: $\quad P_{r}=\frac{\operatorname{dim} r}{|G|} \sum_{g \in G} \chi_{r}\left(g^{-1}\right) g$
These are projection operators in the sense that $\quad P_{r} P_{s}=\delta_{r, s} P_{r}, \quad \sum_{r} P_{r}=1$
Correlation functions in the universe associated to irrep r are

$$
\left\langle\mathcal{O}_{1} \cdots \mathcal{O}_{n}\right\rangle_{r}=\left\langle\mathcal{O}_{1} \cdots \mathcal{O}_{n} P_{r}\right\rangle=\frac{1}{|G|} \sum_{s_{1}, t_{1}, \cdots, s_{p}, t_{p} \in G} \delta\left(\mathcal{O}_{1} \cdots \mathcal{O}_{n}\left(\prod_{i=1}^{p} s_{i} t_{i} s_{i}^{-1} t_{i}^{-1}\right) P_{r}\right)
$$

Note $\left\langle\mathcal{O}_{1} \cdots \mathcal{O}_{n}\right\rangle=\sum_{r}\left\langle\mathcal{O}_{1} \cdots \mathcal{O}_{n}\right\rangle_{r}$

Next, we turn to the Gross-Taylor expansion of 2 d pure $S U(N)$ Yang-Mills.

They argued that at large N, this is a target-space SFT of some other 2d string theory, via a series expansion of the partition functions.

Let's review. On a closed Riemann surface Σ_{T} of genus p and area A,

$$
Z\left(\Sigma_{T}\right)=\sum_{R}(\operatorname{dim} R)^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2 N} C_{2}(R)\right)
$$

Strictly speaking, to get the right large N asymptotics, we need to write irreps R in terms
of coupled representations. For sake of time, and b / c it doesn't significantly affect our result, I'll gloss over that step.

Basic strategy: rewrite the sum over $S U(N)$ irrep data, as a sum over S_{n} 's and S_{n} irrep data, where n is the num' boxes in Young tableau for irrep R, and then interpret in terms of branched covers of Σ_{T}

$$
Z\left(\Sigma_{T}\right)=\sum_{R}(\operatorname{dim} R)^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2 N} C_{2}(R)\right)
$$

Let's rewrite in terms of irreps \& characters of the finite symmetric group S_{n}
Expand the terms using Schur-Weyl duality:

$$
\underset{\text { (fixed irrep } R)}{S U U(N) \text { data }} \longrightarrow(\operatorname{dim} R(Y))^{m}=\left(\frac{N^{n} \operatorname{dim} r(Y)}{\left|S_{n}\right|}\right)^{m} \frac{\chi_{r(Y)}\left(\left(\Omega_{n}\right)^{m}\right)}{\operatorname{dim} r(Y)} \longleftarrow S_{n} \text { data }
$$

where

$$
Y=\text { Young tableau associated with } S U(N) \text { irrep } R
$$

$$
n=\text { num' boxes in Young tableau } Y
$$

$$
r(Y)=S_{n} \text { irrep associated to } Y(\text { and hence } R=R(Y))
$$

$$
\Omega_{n}=\sum_{\sigma \in S_{n}} N^{K_{\sigma}-n} \sigma
$$

$K_{\sigma}=$ num' cycles in the cycle decomposition of $\sigma \in S_{n}$

$$
Z\left(\Sigma_{T}\right)=\sum_{R}(\operatorname{dim} R)^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2 N} C_{2}(R)\right)
$$

$(\operatorname{dim} R(Y))^{m}=\left(\frac{N^{n} \operatorname{dim} r(Y)}{\left|S_{n}\right|}\right)^{m} \frac{\chi_{r(Y)}\left(\left(\Omega_{n}\right)^{m}\right)}{\operatorname{dim} r(Y)}$
Use the identity $\sum_{s, t \in G} \chi_{r}\left(s t s^{-1} t^{-1}\right)=\left(\frac{|G|}{\operatorname{dim} r}\right)^{2} \operatorname{dim} r \quad$ to show

$$
\begin{aligned}
(\operatorname{dim} R(Y))^{m} & =N^{n m}\left(\frac{\operatorname{dim} r(Y)}{\left|S_{n}\right|}\right)^{m+2 p} \sum_{s_{1}, t_{1}, \cdots, s_{p}, t_{p} \in S_{n}} \frac{\chi_{r}\left(\left(\Omega_{n}\right)^{m} \prod_{i=1}^{p} s_{i} t_{i} s_{i}^{-1} t_{i}^{-1}\right)}{\operatorname{dim} r(Y)} \\
& =N^{n m}\left(\frac{\operatorname{dim} r(Y)}{\left|S_{n}\right|}\right)^{m+2 p-1} \sum_{s_{1}, t_{1}, \cdots, s_{p}, t_{p} \in S_{n}} \frac{\delta\left(\left(\Omega_{n}\right)^{m}\left(\prod_{i=1}^{p} s_{i} t_{i} s_{i}^{-1} t_{i}^{-1}\right) P_{r(Y)}\right)}{\operatorname{dim} r(Y)}
\end{aligned}
$$

$$
Z\left(\Sigma_{T}\right)=\sum_{R}(\operatorname{dim} R)^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2 N} C_{2}(R)\right)
$$

So far:

$$
\begin{aligned}
& \text { ofar: } \\
& (\operatorname{dim} R(Y))^{m}=N^{n m}\left(\frac{\operatorname{dim} r(Y)}{\left|S_{n}\right|}\right)^{m+2 p-1} \sum_{s_{1}, t_{1}, \cdots, s_{p}, t_{p} \in S_{n}} \frac{\delta\left(\left(\Omega_{n}\right)^{m}\left(\prod_{i=1}^{p} s_{i} t_{i} s_{i}^{-1} t_{i}^{-1}\right) P_{r(Y)}\right)}{\operatorname{dim} r(Y)}
\end{aligned}
$$

Use the identity

$$
\frac{C_{2}(R(Y))}{N}=n+\frac{2}{N} \frac{\chi_{r(Y)}\left(T_{2}\right)}{\operatorname{dim} r(Y)}-\frac{n^{2}}{N^{2}}
$$

to write

$$
\begin{aligned}
& (\operatorname{dim} R(Y))^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2 N} C_{2}(R)\right) \\
& \quad=N^{n(2-2 p)}\left(\frac{\operatorname{dim} r(Y)}{\left|S_{n}\right|}\right) \sum_{s_{1}, t_{1}, \cdots, s_{p}, t_{p} \in S_{n}} \frac{\delta\left(\left(\Omega_{n}\right)^{2-2 p}\left(\prod_{i=1}^{p} s_{i} t_{i} s_{i}^{-1} t_{i}^{-1}\right) P_{r(Y)}\right)}{\operatorname{dim} r(Y)} \exp \left(-g_{Y M}^{2} \frac{A}{2} n\right) \\
& + \text { subleading }
\end{aligned}
$$

Finally, we have the Gross-Taylor series expansion.
The partition function of two-dimensional pure $S U(N)$ Yang-Mills

$$
Z\left(\Sigma_{T}\right)=\sum_{R}(\operatorname{dim} R)^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2 N} C_{2}(R)\right)
$$

has now been rewritten in terms of S_{n} 's and S_{n} irrep data:

$$
\begin{aligned}
&(\operatorname{dim} R(Y))^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2 N} C_{2}(R)\right) \longrightarrow \begin{array}{c}
S U(N) \text { data } \\
\text { (fixed irrep } R)
\end{array} \\
& \quad=N^{n(2-2 p)}\left(\frac{\operatorname{dim} r(Y)}{\left|S_{n}\right|}\right) \sum_{s_{1}, t_{1}, \cdots, s_{p}, t_{p} \in S_{n}} \frac{\delta\left(\left(\Omega_{n}\right)^{2-2 p}\left(\prod_{i=1}^{p} s_{i} t_{i} s_{i}^{-1} t_{i}^{-1}\right) P_{r(Y)}\right)}{\operatorname{dim} r(Y)} \exp \left(-g_{Y M}^{2} \frac{A}{2} n\right) \\
&+ \text { subleading }
\end{aligned}
$$

Strictly speaking, we need to break up each irrep R into coupled reps; however, the analysis is nearly identical, and the expression above emerges as one of two chiral components.

Next: interpretation....

Let's interpret:

$$
\begin{aligned}
& (\operatorname{dim} R(Y))^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2 N} C_{2}(R)\right) \longleftarrow \quad \begin{array}{l}
\text { Partition function of a single universe } \\
\text { in the decomposition of 2d pure YM. }
\end{array} \\
& \quad=N^{n(2-2 p)}\left(\frac{\operatorname{dim} r(Y)}{\left|S_{n}\right|}\right) \sum_{s_{1}, t_{1}, \cdots, s_{p}, t_{p} \in S_{n}} \frac{\delta\left(\left(\Omega_{n}\right)^{2-2 p}\left(\prod_{i=1}^{p} s_{i} t_{i} s_{i}^{-1} t_{i}^{-1}\right) P_{r(Y)}\right)}{\operatorname{dim} r(Y)} \exp \left(-g_{Y M}^{2} \frac{A}{2} n\right) \\
& + \text { subleading }
\end{aligned}
$$

The RHS (above) is a sum of 2d Dijkgraaf-Witten correlation functions for group S_{n}.
In fact, note that the correlation functions have projectors $P_{r(Y)}$

- these are correlation functions in the universe associated to $r(Y)$!

Takeaway: the partition function of a single universe in the decomposition of 2d pure YM, is a sum of correlation functions in a single universe of 2d Dijkgraaf-Witten for S_{n}.

So far: written partition function of a single universe of 2 d pure $S U(N)$ Yang-Mills as a sum of correlation functions in a single universe of 2d Dijkgraaf-Witten for S_{n}

Decomposition meshes perfectly!

Next: interpret in terms of branched covers of the Riemann surface Σ_{T}

Interpretation of S_{n} Dijkgraaf-Witten in terms of branched n-covers

For simplicity, let's take the Riemann surface $\Sigma_{T}=S^{2}$

If there are no insertions, then, identify the cover with a disjoint union $\coprod_{n} S^{2}$
An insertion of $g \in S_{n}$ corresponds to a branch point of monodromy g, that ties the n sheets of the cover together.

Interpretation of S_{n} Dijkgraaf-Witten in terms of branched n-covers
Examples: $\Sigma_{T}=S^{2}, n=2$: double covers of S^{2}

$$
\langle 1\rangle=\coprod_{2} S^{2}
$$

$$
S^{2} \text { as branched }
$$ double cover of S^{2}; branch pts at poles, and wraps.

$$
\left\langle g^{4}\right\rangle=\frac{\square}{\square \circ}=\square=T^{2}
$$

Let's apply to the (original) Gross-Taylor expansion:

$$
\begin{aligned}
& \sum_{R}(\operatorname{dim} R(Y))^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2 N} C_{2}(R)\right) \\
&=\sum_{n=0}^{\infty} \sum_{r} N^{n(2-2 p)}\left(\frac{\operatorname{dim} r(Y)}{\left|S_{n}\right|}\right) \sum_{s_{1}, t_{1}, \cdots, s_{p} t_{p} \in S_{n}} \frac{\delta\left(\left(\Omega_{n}\right)^{2-2 p}\left(\prod_{i=1}^{p} s_{i} t_{i} s_{i}^{-1} t_{i}^{-1}\right)\right)}{\operatorname{dim} r(Y)} \exp \left(-g_{Y M}^{2} \frac{A}{2} n\right) \\
&+ \text { subleading }
\end{aligned}
$$

This is the expansion of the full YM theory - includes sum over all representations (so the projectors $P_{r(Y)}$ sum out - we'll return to them when we look at individual universes).

$$
\Omega_{n}=\sum_{\sigma \in S_{n}} N^{K_{\sigma}-n} \sigma
$$

Powers of N :

$$
\begin{aligned}
n(2-2 p)+\sum_{j}\left(K_{\sigma_{j}}-n\right) & =n \chi\left(\Sigma_{T}\right)+\sum_{j}\left(K_{\sigma_{j}}-n\right) \\
& =\chi\left(\Sigma_{W}\right) \quad \text { (Riemann-Hurwitz theorem) }
\end{aligned}
$$

where Σ_{W} is a branched n-fold cover of Σ_{T}

Let's apply to the (original) Gross-Taylor expansion:

$$
\begin{aligned}
& \sum_{R}(\operatorname{dim} R(Y))^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2 N} C_{2}(R)\right) \\
&=\sum_{n=0}^{\infty} \sum_{s_{i}, t_{i} \in S_{n}} \sum_{L=0}^{\infty} \sum_{v_{1}, \cdots, v_{L} \in S_{n}} N^{x\left(\Sigma_{w}\right)}(\#) \delta\left(v_{1} \cdots v_{L}\left(\prod_{i=1}^{p}\left[s_{i}, t_{i}\right]\right)\right) \exp \left(-\frac{A}{\alpha_{G T}^{\prime}} n\right)
\end{aligned}
$$

+ subleading
where

$$
\begin{aligned}
& \Sigma_{W}=\text { branched } n \text {-fold cover of } \Sigma_{T}, \text { branched over } L \text { points } \\
& \alpha_{G T}^{\prime}=\frac{2}{g_{Y M}^{2}}
\end{aligned}
$$

\# = misc' numerical factors, which match Euler char' of space of maps

This is the form expected if 2 d pure YM is the SFT of a sigma model $\Sigma_{W} \rightarrow \Sigma_{T}$, at large N

Now let's turn to the decomposition.
The partition function of a single universe of 2 d pure YM is

$$
\begin{aligned}
& (\operatorname{dim} R(Y))^{2-2 p} \exp \left(-g_{Y M}^{2} \frac{A}{2 N} C_{2}(R)\right) \\
& =\sum_{s_{i}, t i \in S_{n}} \sum_{L=0}^{\infty} \sum_{v_{1}, \cdots, v_{L} \in S_{n}} N^{\chi\left(\widetilde{\Sigma}_{W}\right)}(\#) \delta\left(v_{1} \cdots v_{L}\left(\prod_{i=1}^{p}\left[s_{i}, t_{i}\right]\right) \frac{\left.P_{r(Y)}\right)}{}\right) \exp \left(-\frac{A}{\alpha_{G T}^{\prime}} n\right) \\
& + \text { subleading }
\end{aligned}
$$

- Restrict to single $S U(N)$ irrep $R(Y)$
- which fixes $n=$ num' boxes in Young diagram Y for irrep $R(Y)=$ covering map deg'
- plus added factor of projector $P_{r(Y)}$ in the delta function

This means:

1) Sigma model is restricted to maps of a single degree (n)
2) Presence of projector $P_{r(Y)}$ implies add'l contributions not present previously

So, we have puzzles to explain in the expansion of a single YM universe:

1) Sigma model is restricted to maps of a single degree (n)
2) Presence of projector $P_{r(Y)}$ implies add'l contributions not present previously

In broad brushstrokes, both phenomena are typical in decomposition:

- Restrictions on instantons / nonperturbative sectors
- Individual universes can receive contributions which cancel out in sums over universes as we saw previously in the $\quad S U(2)=S O(3)_{+} \coprod S O(3)_{-}$example.

However, the details here are more extreme:

- Restrictions are usually to a subset of instantons, not to a single instanton degree
- Here the extra contributions would expand possible worldsheets beyond smooth Riemann surfaces

Let's examine in detail....

1) Sigma model is restricted to maps of a single degree (n)

In a 2 d NLSM, this is a restriction to (worldsheet) instantons of a single degree.
In decomposition, one often sees restrictions on instanton degrees.
For example, in the $S U(2)=S O(3)_{+} \coprod S O(3)_{-}$example, $S U(2)$ instantons are a subset of $S O(3)$ instantons.

However, in that case, and most other examples, one restricts to a subset of instantons, not to instantons of a single degree.

Let's take a moment to review some underlying physics....

Suppose we try to require that the total instanton number always vanish in our QFT. Start with a field configuration with no net instantons.

Now, move them far away from one another:

Total instanton number: o

Nonzero
instanton number here!

If physics is local ("cluster decomposition"), then in those widely-separated regions, the theories have instantons.

So, even if we start with no net instantons, cluster decomposition implies we get instantons!

Cluster decomposition:

For this reason, Steven Weinberg taught us:
All local quantum field theories must sum over all instantons, so as to preserve cluster decomposition.

Disjoint unions of QFTs also violate cluster decomposition (ex: multiple dimension zero operators), but in principle are straightforward to deal with.

So, if a theory with a restriction on instantons is also a disjoint union, of theories which are well-behaved, then all is OK.

1) Sigma model is restricted to maps of a single degree (n)

In a 2 d NLSM, this is a restriction to (worldsheet) instantons of a single degree.
This is more extreme than we ordinarily see in decomposition.
Furthermore,
labelling field configurations by instanton number is typically just an artifact of a semiclassical expansion, and ordinarily does not have an intrinsic meaning in QFT.

> Proposal:
the Gross-Taylor string has a symmetry for which map degree is a conserved quantity.
But map degree is a 2 -form $\left(\phi^{*} \omega\right)$,
so such a symmetry would be either a 1 -form or (-1)-form symmetry.

1) Sigma model is restricted to maps of a single degree (n)

Proposal:
the Gross-Taylor string has a symmetry for which map degree is a conserved quantity.
But map degree is a 2 -form $\left(\phi^{*} \omega\right)$,
so such a symmetry would be either a 1 -form or (-1)-form symmetry.

To make this more concrete, next I'll walk through a related example, where precisely this happens: 2d pure Maxwell theory.

1) Sigma model is restricted to maps of a single degree (n)

2d pure Maxwell theory:
Pure Maxwell theory in any dimension has a global $B U(1)$ (1-form) symmetry:

$$
A \mapsto A+\Lambda
$$

and Noether current $J^{e}=* F$, associated to operator $U_{\alpha}(p)=\exp (i \alpha * F(p))$
In 2d, it also has a magnetic (-1)-form symmetry,
with current $J^{m}=F$, associated to operator $U_{\beta}(\Sigma)=\exp \left(i \beta \int_{\Sigma} F\right)$
So, the symmetries are of the same form as proposed for Gross-Taylor, making it a useful prototype....

1) Sigma model is restricted to maps of a single degree (n)

2d pure Maxwell theory:

$$
\begin{array}{rlrl}
Z(\Sigma) & =\int[D A] \exp (-S) & \text { for } & \\
\hline
\end{array}
$$

After Poisson resummation,

$$
Z(\Sigma)=\sum_{m=-\infty}^{\infty} \exp \left(-\frac{g_{Y M}^{2} A}{4}(\theta+2 \pi m)^{2}\right)
$$

This is the form of the exact expression for pure YM.
(Paniak, Szabo 'o2; Gross, Matytsin, '94; Minahan, Polychronakos, '93; Caselle et al '93; Fine '90)

Decomposes into universes indexed by m (irreps of $U(1)$), Poisson dual to $n \sim c_{1}$.

1) Sigma model is restricted to maps of a single degree (n)

2d pure Maxwell theory:

$$
Z(\Sigma)=\sum_{m=-\infty}^{\infty} \exp \left(-\frac{g_{Y M}^{2} A}{4}(\theta+2 \pi m)^{2}\right) \quad \propto \sum_{n=-\infty}^{\infty} \exp \left(-\frac{n^{2}}{g_{Y M}^{2} A}+i \theta n\right)
$$

Decomposes into universes indexed by m (irreps of $U(1)$), Poisson dual to $n \sim c_{1}$.
Partition function of a single universe is $\quad \exp \left(-\frac{g_{Y M}^{2} A}{4}(\theta+2 \pi m)^{2}\right)$
Analogue of the Witten effect:
Shifting $\theta \mapsto \theta+2 \pi$ is equivalent to changing the universe: $m \mapsto m+1$

1) Sigma model is restricted to maps of a single degree (n)

2d pure Maxwell theory:

$$
Z(\Sigma)=\sum_{m=-\infty}^{\infty} \exp \left(-\frac{g_{Y M}^{2} A}{4}(\theta+2 \pi m)^{2}\right) \quad \propto \sum_{n=-\infty}^{\infty} \exp \left(-\frac{n^{2}}{g_{Y M}^{2} A}+i \theta n\right)
$$

This is a prototype for the Gross-Taylor proposal: there's a decomposition, into universes indexed by m, which is Poisson dual to the bundle degree.

In Gross-Taylor, we propose there exists a symmetry which allows us to pick out sectors of single map degree (single worldsheet instanton number), which is analogous.

1) Sigma model is restricted to maps of a single degree (n)

So far, we've proposed that the Gross-Taylor string admits an extra symmetry.
Can that be seen directly?
There are (at least) 2 proposals in the literature for the Gross-Taylor string:

1) Cordes-Moore-Ramgoolam: GT string = modification of A model TFT Standard kinetic terms; localizes on holomorphic maps $\{\bar{\partial} x=0\}$
2) Horava: GT string = twisted NLSM with nonstandard kinetic terms

Localizes on harmonic maps $\{\partial \bar{\partial} x=0\}$

The desired symmetry is not immediately visible in either; might be realized nonlinearly, or, maybe there exists a third version.

Review: puzzles to explain in the expansion of a single YM universe:

1) Sigma model is restricted to maps of a single degree (n)

We've argued this implies the GT string has a new symmetry.
2) Presence of projector $P_{r(Y)}$ implies add'l contributions not present previously

We'll study this problem next.
2) Presence of projector $P_{r(Y)}$ implies add'l contributions not present previously

Example: $\quad \Sigma_{T}=S^{2}(p=0), n=2$

$$
\begin{aligned}
& Z=\frac{N^{2 n}}{n!} \delta\left(\left(\Omega_{n}\right)^{2} P_{r}\right) \quad=\frac{N^{2 n}}{n!} \delta\left((1) P_{r}+2\left(\frac{1}{N}\right) v P_{r}+\left(\frac{1}{N}\right)^{2} v^{2} P_{r}\right) \\
&=\frac{N^{4}}{2!} \delta\left(P_{r}\right)+2 \frac{N^{3}}{2!} \delta\left(v P_{r}\right)+\frac{N^{2}}{2!} \delta\left(v^{2} P_{r}\right) \\
&=\frac{N^{4}}{4} \pm \frac{N^{3}}{2}+\frac{N^{2}}{4} \\
&\left.\begin{array}{c}
\Sigma_{W}=S^{2} \llbracket S^{2} \\
x\left(\Sigma_{W}\right)
\end{array}\right)=4 ? ? \quad \begin{array}{l}
\Sigma_{W}=S^{2} \\
x\left(\Sigma_{W}\right)=2
\end{array}
\end{aligned}
$$

The N^{3} term is new - not present in original GT - present here only b/c of P_{r}.
How to interpret? $N^{\chi}=N^{3}$ so $\chi=3$, but no closed string worldsheet has χ odd
2) Presence of projector $P_{r(Y)}$ implies add'l contributions not present previously

How to interpret? No closed string worldsheet has χ odd
Some options:

- Expand out the projector P_{r}

In the previous example, we'd get a term prop' to $N^{3} \delta(v v)$.
From the delta, should be S^{2}, but wrong Euler characteristic.

- Open string?

Subleading corrections were interpreted in the old literature as nonpert' corrections; open string worldsheets could have odd χ

But these terms aren't all subleading, so expect them to be perturbative, hence not from open worldsheets.
2) Presence of projector $P_{r(Y)}$ implies add'l contributions not present previously

How to interpret? No closed string worldsheet has χ odd
Another possible option: stacky worldsheets
Returning to previous example ($\Sigma_{T}=S^{2}, n=2$):

$$
\begin{aligned}
Z & =\frac{N^{4}}{2!} \delta\left(P_{r}\right)+2 \frac{N^{3}}{2!} \delta\left(v P_{r}\right)+\frac{N^{2}}{2!} \delta\left(v^{2} P_{r}\right) \\
& =\frac{N^{4}}{4} \pm \frac{N^{3}}{2}+\frac{N^{2}}{4}
\end{aligned}
$$

Interpret as 2 copies of S^{2} with a single \mathbb{Z}_{2} orbifold point $\left(\mathbb{P}_{[1,2]}^{1}\right)$

$$
\chi\left(\mathbb{P}_{[1,2]}^{1}\right)=3 / 2 \quad \chi\left(\mathbb{P}_{[1,2]}^{1} \coprod \mathbb{P}_{[1,2]}^{1}\right)=(2)(3 / 2)=3
$$

matches power of N !
2) Presence of projector $P_{r(Y)}$ implies add'l contributions not present previously

How to interpret? No closed string worldsheet has χ odd
Another possible option: stacky worldsheets
For $\Sigma_{T}=S^{2}$, there is a systematic construction of stacky Σ_{W} 's (here, Riemann surfaces w/ orbifold points)
that gives matching powers of N.
Idea: Given $\delta\left(v_{1} \cdots v_{L}\right)$, write each $v_{i} \in S_{n}$ as a product of cycles.
On j th copy of S^{2}, if j appears in a cycle of length k, insert \mathbb{Z}_{k}

$$
\text { Example: S'pose } n=6 \text { and } v=(12)(345)(6)
$$

Then, insert \mathbb{Z}_{2} on 2 copies, \mathbb{Z}_{3} on 3 copies, smooth pt on last copy.
Can show $\quad \chi=n(2-2 p)+\sum\left(K_{v_{j}}-n\right) \quad$ which matches power of N
2) Presence of projector $P_{r(Y)}$ implies add'l contributions not present previously

How to interpret? No closed string worldsheet has χ odd
Another possible option: stacky worldsheets
Issues:

- Construction only understood for S^{2}, not higher genus
- Construction not unique - orb' points can be redistributed across sheets of cover
- Have not tried to compare Hurwitz moduli spaces in general cases

> In the same spirit, at least on $\Sigma_{T}=S^{2}$, one can reinterpret the terms as contributions from `stacky' copies of Σ_{T}, meaning, copies with orbifold points.

This is in the spirit of the decomposition: instead of a sigma model summing over maps $\Sigma_{W} \rightarrow \Sigma_{T}$, this would reflect a decomposition, to trivial field theories (corresponding to copies of Σ_{T}).

Summary: reconciling decomposition \& GT string pictures of 2d pure YM

1) Reviewed decomposition

Focusing on examples of S_{n} orbifolds \& 2d pure YM
2) Gross-Taylor and the puzzles

Logic of Gross-Taylor:
First rewrote pure YM partition function as a sum of S_{n} orbifolds, then, interpreted those orbifolds as branched covers and then as SFT.

We saw that the S_{n} orbifolds interlace with decomposition perfectly, but two puzzles arise in the branched covers/SFT interpretation.
3) Proposed resolution

The branched cover/SFT interpretation will also be compatible if the GT string is required to have a novel symmetry.

Thank you for your time!

