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As you all know,
there’s been a lot of interest in the last few years in 

the landscape program.

One of the issues in the landscape program,
is that those string vacua are counted by low-energy 

effective field theories,
and it is not clear that all of those have consistent

UV completions -- not all of them may come from an
underlying quantum gravity.

(Banks, Vafa)



One potential such problem arises in heterotic E8xE8 
strings.

Let’s briefly review heterotic strings.

10d:  metric, B field, nonabelian gauge field
(E8xE8 or Spin(32)/Z2)

If compactify on X, then need gauge bundle E -> X
such that    tr(F2) = tr(R2)   in cohomology
(anomaly cancellation / Green-Schwarz)

and gij* Fij* = 0  (Donaldson-Uhlenbeck-Yau)
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Heterotic nonlinear sigma model:

* 2d QFT, in fact a CFT
ψ+

λ
−

couple to TX
couple to gauge bundle

* Possesses (N=2) supersymmetry on right-movers,
ie: φ, ψ+

Call this chiral supersymmetry ``(0,2) supersymmetry’’
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Heterotic nonlinear sigma model:

In a critical string, there are:

* 10 real bosons φ

* 10 real fermions ψ+

* 32 real fermions (or, 2 groups of 16) λ
−

so as to get central charge (26,10)

How to describe E8 with 16    ?λ
−



The conventional worldsheet construction builds each 
E8 using a (Z2 orbifold of) the fermions

The fermions realize a Spin(16) current algebra at 
level 1, and the Z2 orbifold gives Spin(16)/Z2. 

Spin(16)/Z2 is a subgroup of E8,
and we use it to realize the E8.
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How to describe E8?

λ
−



How to realize E8 with Spin(16)/Z2 ?

Adjoint rep of E8 decomposes
into adjoint of Spin(16)/Z2 + spinor:

248 = 120 + 128

So we take currents transforming in adjoint, spinor of 
Spin(16)/Z2, and form E8 via commutation relations.

More, in fact:  all E8 d.o.f. are realized via 
                                         Spin(16)/Z2

left NS sector

left R sector



This construction has served us well for many years,
but,

in order to describe an E8 bundle w/ connection,
that bundle and connection must be reducible to

Spin(16)/Z2.

Can this always be done?

Briefly: Bundles -- yes (in dim 9 or less)
Connections/gauge fields -- no.

Heterotic swampland?

After all, all info in kinetic term hαβλ
α
−

D+λ
β
−



Summary of this talk:

Part 1:  Reducibility of E8 bundles w/ connection
to Spin(16)/Z2.

Worldsheet descriptions?
Part 2:  Alternative constructions of 10d heterotic 

strings using other subgroups of E8.
-- gen’l Kac-Moody algebras, 

typically no free field representations
Part 3:  Realize in compactifications with 

`fibered WZW models’;
physical realization of elliptic genera of Ando, Liu

No swampland; new worldsheet constructions instead.



Reducibility of bundles
If H is a subgroup of G, 

then obstructions to reducing a p-pal G bdle on M 
to a p-pal H bundle live in Hk(M, πk−1(G/H))

(A Henriques)

E8/Spin(16)/Z2 −→ BSpin(16)/Z2 −→ BE8

Use the fiber sequence

1 2 3 4 5 6 7 8 9 10 11
0 Z2 0 0 0 0 0 Z Z2 Z2 0
0 Z2 0 Z 0 0 0 Z Z2 Z2 0
0 0 0 Z 0 0 0 0 0 0 0

πi :

E8/Spin(16)/Z2

BSpin(16)/Z2

BE8

Obs’:  H3(M,Z2), H9(M,Z), H10(M,Z2)



Reducibility of bundles

It can be shown, via a cobordism invariance argument, 
that on an oriented manifold, 

the obstruction in H9(M,Z) will vanish.

The obstruction in H10(M,Z2) need not vanish.
It counts the number of pos’-chirality zero modes of 

the ten-dim’l Dirac operator, mod 2,
 and has appeared in physics in work of Diaconescu-

Moore-Witten on K theory.

The obstruction in H3(M,Z2) vanishes because it is a 
pullback from H3(BE8,Z2) = 0.

(A Henriques)



So far:

In dim 9 or less,
all principal E8 bundles can be reduced to

principal Spin(16)/Z2 bundles.

Next:

Reducibility of connections (gauge fields)



Reducibility of 
connections

(R. Thomas)

On a p-pal G bundle,
even a trivial p-pal G bundle,

one can find connections with holonomy that fill out 
all of G,

and so cannot be understood as connections on a 
p-pal H bundle for H a subgroup of G:

just take a conn’ whose curvature generates the 
Lie algebra of G.

Thus, just b/c the bundles can be reduced,
doesn’t mean we’re out of the woods yet.



Reducibility of 
connections

(R. Thomas)

We’ll build an example of an anomaly-free gauge field 
satisfying DUY condition

that does not sit inside Spin(16)/Z2.

The basic trick is to use the fact that E8 has an
(SU(5)xSU(5))/Z5 subgroup

that does not sit inside Spin(16)/Z2.
We’ll build an (SU(5)xSU(5))/Z5 connection.



Spin(16)/Z2

SU(5) × SU(5)

Z5

E8



Reducibility of 
connections

Build a stable SU(5) bundle on an elliptically-fibered 
K3 using Friedman-Morgan-Witten technology.

Rk 5 bundle with c1=0, c2=12 has spectral cover in
linear system             , describing a curve of genus |5σ + 12f |

g = 5c2 − 5
2

+ 1 = 36

together with a line bundle of degree
−(5 + g − 1) = −40



Reducibility of 
connections

(R. Thomas)

Result is a (family of) stable SU(5) bundles with
c2=12 on K3.

Holonomy generically fills out all of SU(5).

Put two together,
and project to Z5 quotient,

to get (SU(5)xSU(5))/Z5 bundle w/ connection
that satisfies anomaly cancellation + DUY.



Reducibility of 
connections

(R. Thomas)

Thus, we have an example of a consistent heterotic 
sugrav background,

in which the E8 bundle cannot be reduced to 
Spin(16)/Z2,

and so cannot be described with ordinary heterotic 
worldsheet theory.



Low-
energy
gauge 
group

E8

0

Standard worldsheet
construction applies

Standard construction 
does not apply

Lessons for the Landscape

Statistics on trad’l CFT’s artificially favors large gps



So far:

* E8 bundles in dim < 10 can be reduced to 
Spin(16)/Z2 bundles

* but connections (gauge fields) cannot

Heterotic swampland?

Next:

Alternative constructions of 10d heterotic strings
using subgroups of E8 other than Spin(16)/Z2



Alternative E8 
constructions

Example:

E8 has an ( SU(5) x SU(5) )/Z5 subgroup.
Can it be used instead of Spin(16)/Z2 ?

There are free field representations of U(n), Spin(n) 
at level 1, but not SU(n)... 

... so we’ll need to work with the current algebras 
more abstractly.

One issue:



Alternative E8 
constructions

So, we’ll take current algebras for two copies of 
SU(5) at level 1, and orbifold by a Z5

Check:  central charge of each SU(5) = 4,
so adds up to 8 

 = central charge of E8

Next, more convincing tests....



Alternative E8 
constructions

Check:  fusion rules

Conformal familes of SU(5) current algebra obey
[5]x[5] = [10],    [10]x[5] = [5],    etc

so the combination
[1] + [5,10*] + [5*,10] + [10,5] + [10*,5*]

squares into itself; identify with [1] of E8 level 1.

Contains the E8 adjoint decomposition
248 = (1,24) + (24,1) + (5,10*) + (5*,10) + (10,5) + (10*,5*)



Alternative E8 
constructions

For Spin(16)/Z2, corresponding to the decomposition
248 = 120 + 128

there is a decomposition of characters/left-moving
partition f’ns:

χE8
(1, q) = χSpin(16)(1, q) + χSpin(16)(128, q)

χE8
(1, q) = χSU(5)(1, q)2 + 4 χSU(5)(5, q)χSU(5)(10, q)

248 = (1,24) + (24,1) + (5,10*) + (5*,10) + (10,5) + (10*,5*)
For SU(5)2/Z5, from the decomp’ of adjoint

get a prediction for characters:

Best check:  characters



Alternative E8 
constructions

Check:  characters
χSU(5)(1, q) =

1
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Can show
χE8

(1, q) = χSU(5)(1, q)2 + 4 χSU(5)(5, q)χSU(5)(10, q)

so E8 worldsheet d.o.f. can be replaced by SU(5)2

(E. Scheidegger) (Kac, Sanielevici) 



Alternative E8 
constructions

Analogous statement for Spin(16)/Z2 is
χE8

(1, q) = χSpin(16)(1, q) + χSpin(16)(128, q)

There is a Z2 orbifold implicit here -- 
the 1 character is from untwisted sector,
the 128 character is from twisted sector.

Sim’ly, in the expression
χE8

(1, q) = χSU(5)(1, q)2 + 4 χSU(5)(5, q)χSU(5)(10, q)

there is a Z5 orbifold implicit. Good!:  SU(5)2/Z5



Alternative E8 
constructions

Another max-rank subgroup:   SU(9)/Z3.
Check:  central charge = 8 = that of E8.

E8 conformal family decomposes as
[1] = [1] + [84] + [84*]

Can show
χE8

(1, q) = χSU(9)(1, q) + 2 χSU(9)(84, q)

So, can describe E8 w.s. d.o.f. with SU(9)/Z3.
(Note Z3 orbifold implicit.)



Alternative E8 
constructions

A non-max-rank possibility:  G2xF4

Central charge of G2 at level 1 = 14/5
Central charge of F4 at level 1 = 52/10

Sum = 8   
= central charge of E8 at level 1

χE8
(1, q) = χG2

(1, q)χF4
(1, q) + χG2

(7, q)χF4
(26, q)

Even better:  



Alternative E8 
constructions

χE8
(1, q) = χG2

(1, q)χF4
(1, q) + χG2

(7, q)χF4
(26, q)

Problem:  This has structure of Z2 orbifold twisted 
sectors,

but, G2 & F4 both centerless.

Conclusion:  G2xF4 can’t be realized.
(Though it does come close.)



So far:

* not all p-pal E8 bundles w/ connection can be 
described using trad’l heterotic worldsheet 

construction
* in 10d there exist alternative constructions of the 

E8’s, using gen’l Kac-Moody algebras

Next:

Fiber Kac-Moody algebras over gen’l mflds using
`fibered WZW models’

(J Distler, ES;  J Gates, W Siegel, etc)



Fibered WZW models
First, recall ordinary WZW models.

S = −

k

2π

∫

Σ

Tr
[

g−1∂gg−1∂g
]

−

ik

2π

∫

B

d3yεijk
Tr

[

g−1∂igg−1∂jgg−1∂kg
]

J(z) = g−1∂g J(z) = ∂g g−1

Looks like sigma model on mfld G w/ H flux.
Has a global GLxGR symmetry, with currents

obeying ∂J(z) = ∂J(z) = 0

-- realizes G Kac-Moody algebra at level k



Fibered WZW models
Let P be a principal G bundle over X,

with connection A.
Replace the left-movers of ordinary heterotic with 
WZW model with left-multiplication gauged with A.

1

α′

∫

Σ

(

gi∂αφi∂αφ + · · ·

)

−

k

4π

∫

Σ

Tr
(

g−1∂gg−1∂g
)

−

ik

12π

∫

B

d3yεijkTr
(

g−1∂igg−1∂jgg−1∂kg
)

−

k

2π
Tr

(

(∂φµ)Aµ∂gg−1 +
1

2
(∂φµ∂φν)AµAν

)

NLSM on X

WZW

Gauge left-multiplication



Fibered WZW models
A WZW model action is invariant under gauging 

symmetric group multiplications,
but not under the chiral group multiplications 

that we have here.
g !→ hg

Aµ !→ hAµh
−1

+ h∂µh
−1

Under

the classical action is not invariant.

As expected -- this is bosonization of chiral anomaly.
... but this does create a potential well-definedness 

issue in our fibered WZW construction ....



Fibered WZW models
In add’n to the classical contribution, the classical 
action also picks up a quantum correction across 
coord’ patches, due to right-moving chiral fermi 

anomaly.
To make the action gauge-invariant, we proceed in the 

usual form for heterotic strings:
assign a transformation law to the B field.

Turns out this implies Anom’ canc’
at level kk ch2(E) = ch2(TX)

If that is obeyed, then action well-defined globally.



Fibered WZW models
The right-moving fermion kinetic terms on the 

worldsheet couple to H flux:
i

2
gµνψ

µ

+Dzψ
ν

+

Dzψ
µ

+ = ∂ψµ

+ + ∂φµ
(

Γν

σµ
− Hν

σµ

)

ψσ

+

where

H = dB + (α′) (kCS(A) − CS(ω))

To make fermion kinetic terms gauge-invariant, set 

Anomaly-cancellationk ch2(E) = ch2(TX)



Fibered WZW models
Demand (0,2) supersymmetry on base.

Discover an old faux-susy-anomaly in subleading 
terms in α

′

Susy trans’ in ordinary heterotic string:
δλ

−
= −iεψµ

+Aµλ
−

-- same as a chiral gauge transformation,
with parameter −iεψµ

+Aµ

-- appears classically in bosonized description

-- b/c of chiral anomaly, there is a quantum 
contribution to susy trans’ at order α

′

(Sen)



Fibered WZW models
(0,2) supersymmetry:

One fermi-terms in susy transformations of:
NLSM Base:

WZW fiber:

Quantum:

1

α′

∫
Σ

(iαψı)∂φµ∂φν (H − dB)
ıµν

∫
Σ

(iαψı)∂φµ∂φνCS(ω)ıµν

−k

∫
Σ

(iαψı)∂φµ∂φνCS(A)ıµν

for susy
to close

H = dB + α
′ (kCS(A) − CS(ω))



Fibered WZW models

Take an ordinary heterotic string on S1, and orbifold 
by a Z2 that translates on the S1 and simultaneously 

exchanges the E8’s.
Result is 9d theory with level 2 E8 algebra.
Covering space: ch2(E) + ch2(E) = ch2(TX)

Yet another check of k ch2(E) = ch2(TX)

Quotient: 2 ch2(E) = ch2(TX)

Exactly consistent.Level = 2:



Fibered WZW models
Massless spectrum:

In an ordinary WZW model, the massless spectrum is 
counted by WZW primaries, which are associated to

integrable rep’s of G.

Here, for each integrable rep R of the principal G 
bundle P,

we get an associated vector bundle ER.

Massless spectrum = H*(X, ER) for each R



Fibered WZW models
Massless spectrum:

Example:  G = SU(n), level 1
Here the integrable reps are the fundamental n

and its exterior powers.

Massless spectrum:   H*(X, Alt* E)
(Distler-Greene, ‘88) 



Fibered WZW models
Massless spectra:

Check that Serre duality closes these states back into 
themselves:

When X has trivial canonical bundle,

H ·(X, ER) ∼= Hn−·(X, E∨

R)∗ ∼= Hn−·(X, ER∗)
∗

R is an integrable rep iff R* is integrable,
so all is OK



Fibered WZW models
Elliptic genera:

= 1-loop partition function

In std case, has the form
q−d/24−r/48



Â(TM)ch





⊗

k=1/2,3/2,···

ΛqkE
⊗

!=1,2,3,···

Sq!TM



 [M ]





ΛqE = 1 + qE + q
2Λ2

E + · · ·

SqT = 1 + qT + Sym2T + · · ·

where

(Witten)



Fibered WZW models
Elliptic genera:

Anom’ cancellation shows up as a condition for the 
elliptic genus to have good modular properties.
Â(TM)ch(Sq!T )

= η(q2)−8m exp

{

∞
∑

k=1

G2k(q2)
1

(2k)!
Tr

(

iR

2π

)2k
}

G2k(q2) have good mod’ prop’s for k>1
but not for k=1

For this by itself, to insure good prop’s, 
need Tr R2 exact



Fibered WZW models
Elliptic genera:

These fibered WZW constructions realize the `new’ 
elliptic genera of Ando, Liu.

Ordinary elliptic genera describe left-movers coupled 
to a level 1 current algebra;

these, have left-moving level k current algebra.

Black hole applications?



Conclusions

* standard heterotic worldsheet constructions do not 
suffice to describe all heterotic sugrav vacua

* but more general constructions exist which describe 
the others

-- build E8 from other subgroups

-- fibered WZW models




