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It’s been 30 years since Witten first published his “Phases…” paper, 
roughly the same time that the Web came into existence.

However, work continues to this day on GLSMs, 
as we shall hear this week!

We have an audience full of experts, 
and the organizers would love to hear talks from everyone here, 

but time does not permit — I apologize to everyone who won’t get to speak.

However, we’re talking about organizing a proceedings volume, 
which would welcome contributions from  

both speakers and participants 
— expect to hear more about this later this summer.



Now,  
we have here people with a wide range of backgrounds and approaches to GLSMs, 

including both mathematicians and physicists.

The organizers thought it would be useful to have an introductory survey, 
to remind everyone of the proverbial big picture, 

how everything fits together, 
to aid both in understanding the talks and to foster collaborations.

That’s the goal of this talk.



So:  The goal of this talk is to briefly outline, to survey,  
developments and research areas in GLSMs.

To be clear, a one-hour talk simply is not nearly sufficient to describe, 
much less give justice to, 

everything going on, 

but I do hope to outline an overall picture of how everything is related, 
and links between different areas.

I apologize in advance to the many people whose work I won’t be 
able to talk about here in detail 

— it’s not lack of interest, it’s merely lack of time!



This survey talk has four parts:

• Constructions of geometries

• Quantum cohomology and 2d mirrors

• Quantum sheaf cohomology

• Quantum K theory

I’ll try to use these four broad topics to link the various talks we’ll have this week.



Part 1:  Constructions of geometries



Part 1:  Constructions of geometries

Originally, GLSMs were used to give physical realizations (as 2d QFTs) of 
geometries of the form   , 

and complete intersections therein.
ℂn//G

Briefly:  realize the symplectic quotient  
as a 2d supersymmetric -gauge theory with matter fields corresponding to , 
plus additional matter and a superpotential to realize a complete intersection.

ℂn//G
G ℂn

However, nowadays we know of more subtle ways to realize geometries….

I’ll refer to this as a “perturbative” description.

Ex: to describe hypersurface ,   add field   &   {G = 0} p W = pG



Part 1:  Constructions of geometries

However, nowadays we know of more subtle ways to realize geometries….

Two basic alternative phenomena:

• Strong coupling effects in 2d gauge theory restrict space of vacua.

Prototype:  Grassmannian-Pfaffian (Hori, Tong, hep-th/0609032)

• Decomposition locally realizes a branched cover
Prototype:  CI quadrics - branched covers  

(Caldararu, Distler, Hellerman, Pantev, ES arXiv: 0709.3855) 

We also know of dualities that can turn these into perturbative descriptions.

I’ll quickly walk through these in turn.…



Nonperturbative construction of Pfaffians (Hori, Tong hep-th/0609032)

Prototypical example:  GLSM for G(2,7)[17]

 gauge theory with 7 fundamentals plus 7  charged under U(2) pα det U(2)

W = ∑
a

pαGα (ϵabϕa
i ϕb

j ) = ∑
ij

ϵabϕa
i ϕb

j Aij(p)

:   by standard analysisr ≫ 0 G(2,7)[17]

: utilizes a strong-coupling analysisr ≪ 0
Loci with 1 massless doublet (generic case):   0 susy vacua
Loci with 3 massless doublets:  1 susy vacuum

This describes a Pfaffian variety.



Nonperturbative construction of branched covers

Prototypical example:  GLSM for ℙ3[2,2]

 gauge theory,   4  chiral mult’s of charge ,   2  chiral mult’s of charge U(1) ϕi +1 pa −2

W = ∑
a

paGa(ϕ) = ∑
ij

Sij(p)ϕiϕj

 phase:  , standard analysisr ≫ 0 ℙ3[2,2]
 phase:   is a mass matrix; looks like     ?????r ≪ 0 Sij ℙ1 = Proj ℂ[pa]

Correct analysis:
In a Born-Oppenheimer approx’ over the base , 

the 2d theory generically has a  1-form symmetry: 
decomposes into double cover, branched over deg 4 locus 

ℙ1

ℤ2
{det A = 0}

Both phases are .T2

(Caldararu, Distler, Hellerman, Pantev, ES  
arXiv: 0709.3855) 



Nonperturbative construction of branched covers

Very similar example:    branched double cover of , branched over deg 6 curveℙ5[2,2,2] ↔ ℙ2

Both phases are K3s.

Starting in 3-folds, the examples become more interesting.

nc res’n of branched double coverℙ7[2,2,2,2] ↔
I’ll outline what that means next….

(Caldararu, Distler, Hellerman, Pantev, ES  
arXiv: 0709.3855) 



One property of these constructions is that sometimes,  
what appears is actually a noncommutative resolution of a branched cover.

In other words, the GLSM gives a UV representation of a closed string CFT for a nc res’n.

Example:  The  phase of the GLSM for  
is a noncommutative resolution 

of a branched double cover of .

r ≪ 0 ℙ7[2,2,2,2]

ℙ3

There isn’t time here to explore the meaning of these nc resolutions. 
However, they will instead be discussed later this week 

in talks of Katz, Schimannek, and also Romo, Guo.

(Defined by Kuznetsov, van den Bergh, …. in terms of derived category.)

They are detected physically by studying matrix factorizations in (hybrid) LG phase, 
ie, by examining the D-branes in the theory.



Another property of these 3-fold examples (both Grassmannian/Pfaffian & br’ covers) 
is that the different GLSM phases are not birational.

This contradicted folklore of the time, which said that all GLSM phases were birational.

Instead, these phases are related by homological projective duality.
(Kuznetsov, math.AG/ 0507292, 0510670, 0610957)

This is beyond the scope of today’s talk, but I believe will be explored further 
in later talks this week by Guo, Romo.

Homological projective duality has been studied in this context in mathematics, 
in variations of GIT quotients,  

see e.g. work of Ballard, Favero, Deliu, Katzarkov, Halpern-Leistner, & others.



Nowadays, we can use dualities to exchange  
perturbative and nonperturbative constructions of geometry, 

see work by e.g. Knapp & collaborators.

Pfaffians via PAX, PAXY models of (Jockers, Kumar, Lapan, Morrison, Romo arXiv: 1205.3192) 

We can also realize similar effects perturbatively.

Example:



Part 2: Quantum cohomology and 2d mirrors



Quantum cohomology

One of the original applications of GLSMs was to make predictions  
for quantum cohomology rings of Fano toric varieties.

In particular, quantum cohomology can be seen in a Coulomb branch computation.

Under RG flow, the GLSM for  describes a space that shrinks, 
to (classical) zero-size, and then onto the Coulomb branch, 

where QH is described as classical critical locus of a (twisted one-loop effective) superpotential, 
instead of a sum over rat’l curves.

ℙn

(Morrison, Plesser hep-th/9412236)

In other words, we can use the GLSM to replace counting rational curves (on Higgs) 
with an algebraic computation (on Coulomb branch), 

that encodes the same result.



For      for  ,  the superpotential is of the formℂn//G G = (ℂ*)k

W̃(σ) =
k

∑
a=1

σa τa + ∑
i

Qa
i ln (

k

∑
b=1

Qb
i σb) − 1

Quantum cohomology (Morrison, Plesser hep-th/9412236)

and assuming that the theory flows in the IR to the Coulomb branch 
(eg, geometry is Fano    QFT is asymptotically free), 

then the resulting critical locus        is given by
⇔

∂W̃ /∂σa = 0

∏
i (∑

b

Qb
i σb)

Qa
i

= exp(2πiτa) = qa



Example:  ℙn

Under RG flow, the GLSM for  describes a space that shrinks, 
to (classical) zero-size, and then onto the Coulomb branch.

ℙn

One-loop twisted effective superpotential

W̃ = σ [τ +
n+1

∑
i=1

(ln σ − 1)]
Critical locus: ∂W̃

∂σ
= τ + ln (σn+1)

= 0 ⇒ σn+1 = exp(−τ) = q The QH ring rel’n!



Quantum cohomology
The same ideas apply to nonabelian GLSMs, 

meaning, GLSMs describing spaces of the form   for nonabelian   
(and subvarieties thereof).

ℂn//G G

For Fano ,  
RG flow again drives the GLSM out of geometry and onto the Coulomb branch.

ℂn//G

Again the ring arises as the critical locus of a superpotential, 
albeit with two subtleties:

• The Coulomb branch is a Weyl-group orbifold of the ’sσ
• The Coulomb branch is an open subset (remove ‘excluded loci’)



Example: G(k, n)

The Grassmannian  ,  acting as  copies of fundamental rep’.G(k, n) = ℂkn//GL(k) n

Here, the twisted one-loop effective superpotential is

W̃ =
k

∑
a=1

σa −ln(( − )k−1q) + ∑
i,b

Qa
ib ln (

k

∑
c=1

Qc
ibσc) − 1 for  Qa

ib = δa
b

=
k

∑
a=1 [−ln(( − )k−1q) +

n

∑
i=1

(ln σa − 1)]

Critical locus:
∂W̃
∂σa

= − ln (( − )k−1q) + ln(σa)n

= 0 implies (σa)n = ( − )k−1q



Example: G(k, n)

Critical locus: (σa)n = ( − )k−1q

It may not look like it yet, but this is the QH ring relation for the Grassmannian.

Quick check:  number of vacua

Recall the Weyl group of , namely , interchanges the , 
plus we avoid the excluded locus (where  collide), 

hence number of solutions to critical locus equation is

U(k) Sk σa
σa

( n
k ) = χ(G(k, n)) as expected

Order  polynomial, so  solutions for each     so    possible values, but…n n σa kn

How to write the result more symmetrically?



Example: G(k, n)

Critical locus: (σa)n = ( − )k−1q

It may not look like it yet, but this is the QH ring relation for the Grassmannian.

Briefly: The    are  distinct roots of the polynomialσa k ξn + ( − )kq = 0

Let    denote the remaining  roots.σa′ 
n − k

From Vieta’s theorem (algebra), the elementary symm’ polynomials in     areσa, σa′ 

n−k

∑
r=0

eℓ−r(σ)er(σ) = ( − )n−kqδℓ,n + δℓ,0

Define   ct(σ) =
k

∑
ℓ=0

tℓeℓ(σ) then this is ct(σ) ct(σ) = 1 + ( − )n−kqtn

which is a standard expression for QH∙(G(k, n))
(Witten, “Verlinde algebra…” equ’n (3.16))



So far I’ve reviewed Coulomb-branch-based quantum cohomology computations in GLSMs.

Another approach to these & related questions is to use mirror symmetry, 
which I’ll review next….



Superpotential

W = ∑
a

σa(∑
i

ρa
i Yi − ta) + ∑

i

exp (−Yi)

Hori-Vafa mirror

Mirror: 

σa ,   a ∈ {1,⋯, r} σa = D+D−Va

Yi mirror to matter fields
Fields:

 gauge theory with matter multiplets of charges U(1)r ρa
i

Periodicities Yi ∼ Yi + 2πi
After all, in 2d, the theta angle acts like an electric field, and periodicity on a noncompact space 

is determined by screening by matter fields.

(Hori, Vafa, hep-th/0002222; Morrison-Plesser hep-th/9508107)



Superpotential

W = ∑
a

σa(∑
i

ρa
i Yi − ∑̃

μ

αa
μ̃ ln Xμ̃

Nonabelian mirror
For a  gauge theory, pick a Cartan torus , 

matter multiplets in representation .
G U(1)r ⊆ G

ρ

Weyl-group orbifold of the following LG model

σa ,   a ∈ {1,⋯, r} σa = D+D−Va

Yi mirror to matter fields
Fields:

Xμ̃ correspond to nonzero roots of 𝔤

 = weight vector,   = root vectorρi αμ̃

Idea: “Abelian duality in Cartan torus, at generic pt on Coulomb branch”

Mirror: 

(Gu, ES, arXiv:1806.04678)

− ta) + ∑
i

exp (−Yi) + ∑̃
μ

Xμ̃



Operator mirror map

In principle, both these mirrors have the property that  
correlation functions in the original A-twisted GLSM 

are the same as 
correlation functions in the B-twisted LG mirror.

We can derive a mirror map for operators from the critical loci of the superpotential.

W = ∑
a

σa ∑
i

]rhoa
i Yi − ∑̃

μ

αa
μ̃ ln Xμ̃ − t + ∑

i

exp(−Yi) + ∑̃
μ

Xμ̃

∂W
∂Xμ̃

= 0 Xμ̃ = ∑
a

σaαa
μ̃

∂W
∂Yi

= 0 exp(−Yi) = ∑
a

σaρa
i

implies

implies

B A



Example:  ℙn

Mirror is LG model with superpotential

W = σ (∑
i

Yi − t) + exp(−Y1) + ⋯ exp(−Yn+1)

Integrate out :σ, Yn+1

W = exp(−Y1) + ⋯ + exp(−Yn) + q exp (Y1 + ⋯ + Yn)
where  q = exp(−t)

Critical locus:
∂W
∂Yi

= − exp(−Yi) + q exp (Y1 + ⋯ + Yn)
= 0 exp(−Yi) = q∏

j

exp(+Yj)implies

so if we define        then   X = exp(−Yi) Xn+1 = q Standard ring rel’n !



Example:  G(k, n)

Mirror is  orbifold of LG model with superpotentialSk

W =
k

∑
a=1

σa ∑
ib

ρa
ibY

ib − ∑
μ≠ν

αa
μν ln Xμν − t + ∑

ia

exp (−Yia) + ∑
μ≠ν

Xμν

ρa
ib = δa

b , αa
μν = − δa

μ + δa
νfor

=
k

∑
a=1

σa ∑
a

Yia + ∑
ν≠a ( Xaν

Xνa ) − t + ∑
ia

exp (−Yia) + ∑
μ≠ν

Xμν

Integrate out , thenσa, Yna

W =
n−1

∑
i=1

k

∑
a=1

exp (−Yia) + ∑
μ≠ν

Xμν +
k

∑
a=1

Πa

for Πa = exp(−Yna) = q (
n−1

∏
i=1

exp(+Yia)) ∏
ν≠a

Xaν

Xνa



Example:  G(k, n)

W =
n−1

∑
i=1

k

∑
a=1

exp (−Yia) + ∑
μ≠ν

Xμν +
k

∑
a=1

Πa

for Πa = exp(−Yna) = q (
n−1

∏
i=1

exp(+Yia)) ∏
ν≠a

Xaν

Xνa

Critical locus:
∂W
∂Yia

= − exp(−Yia) + Πa = 0 so exp(−Yia) = Πa for all i

∂W
∂Xμν

= 1 +
Πμ − Πν

Xμν
= 0 so Xμν = − Πμ + Πν

which implies (Πa)n = ( − )k−1q∏
ν≠a

Xaν

Xνa
= ( − )k−1



Example:  G(k, n)

Critical locus: ∏
ν≠a

Xaν

Xνa
= ( − )k−1 (Πa)n = ( − )k−1q

Operator mirror map: exp(−Yia) = Πa ↔ σa

Xμν ↔ − σμ + σν

so the critical locus equation recovers the expression for  described earlier:QH∙(G(k, n))
(σa)n = ( − )k−1q(Πa)n = ( − )k−1q becomes

Also, poles in the superpotential at      correspond to excluded locus:Xμν = 0
σμ ≠ σν for μ ≠ ν



We’ll have a talk later this week on nonabelian T duality 
by Cabo Bizet.Related:



Shout-out:  Supersymmetric localization

Susy localization was first applied to 2d GLSMs in, to my knowledge,

(Benini, Cremonesi, arXiv: 1206.2356; Doroud, Gomis, Le Floch, Lee, arXiv: 1206.2606)

and was quickly applied to give alternative  
physical computations of Gromov-Witten invariants,

(Jockers, Kumar, Lapan, Morrison, Romo, arXiv: 1208.6244)

These are important contributions, which I wanted to acknowledge, 
but lack of time prevents me from going into any detail.

elliptic genera   (Benini, Eager, Hori, Tachikawa arXiv: 1305.0533, 1308.4896), 
and Gamma classes   (Halverson, Jockers, Lapan, Morrison arXiv: 1308.2157; Libgober math/9803119,  

Iritani arXiv: 0712.2204, 0903.1463; Katzarkov, Kontsevich, Pantev arXiv: 0806.0107).



Shout-out: D-branes in GLSMs

GLSMs on open strings were explored in detail in (Herbst, Hori, Page arXiv: 0803.2045), 
which described e.g. the grade restriction rule.

There isn’t time in this talk to explain any details, 
but we will be hearing more about this later this week 

in talks from Brunner, Hori, Guo, Aleshkin.



Part 3: Quantum sheaf cohomology



So far I’ve discussed GLSMs for 2d theories with (2,2) susy.

There also exist GLSMs for 2d theories with (0,2) susy. 
Briefly, these specify a space , along with a holomorphic vector bundle , 

obeying the constraint .
X ℰ → X

ch2(ℰ) = ch2(TX)

These admit analogues of the A, B model topological twists.

A/2 model:  exists when  det ℰ* ≅ KX

operators ~ H∙(X, ∧∙ ℰ*)

B/2 model:  exists when  det ℰ ≅ KX

operators ~ H∙(X, ∧∙ ℰ)

Reduce to (2,2) and the ordinary A, B models in the special case ℰ = TX

(Discussed in Witten “Phases”, also Distler, Kachru hep-th/9309110, 9406090, 9406091, …)



Quantum sheaf cohomology

Ordinary quantum cohomology arises from A-twisted (2,2) susy NLSMs.

Operators in the ordinary A model  ~  H∙,∙(X) = H∙(X, ∧∙ T*X)
Correlation functions  ~  intersection theory on a moduli space of curves

Correlation functions  ~  sheaf cohomology on a moduli space of curves
“quantum sheaf cohomology”

Reduces to ordinary quantum cohomology in the special case  ℰ = TX

Quantum sheaf cohomology arises from A/2-twisted (0,2) susy NLSMs.

(S Katz, ES  hep-th/0406226)

Operators in the A/2 model  ~  H∙(X, ∧∙ ℰ*)

Classical product:      H∙(X, ∧∙ ℰ*) × H∙(X, ∧∙ ℰ*) ↦ H∙+∙(X, ∧∙+∙ ℰ*)



Example:

Ordinary quantum cohomology ring of  isℙ1 × ℙ1

ℂ[x, y]/(x2 − q1, y2 − q2)

Quantum sheaf cohomology on :ℙ1 × ℙ1

Define a holomorphic vector bundle  to be a deformation of the tangent bundle:ℰ

0 ⟶ 𝒪2 ⟶ 𝒪(1,0)2 ⊕ 𝒪(0,1)2 ⟶ ℰ ⟶ 0*

then the quantum sheaf cohomology ring of  is(ℙ1 × ℙ1, ℰ)
ℂ[x, y]/(det(Ax + By) − q1, det(Cx + Dy) − q2)

When       (meaning, )   this reduces to standard  above.ℰ = TX A = D = I, B = C = 0 QH∙

(McOrist, Melnikov  
arXiv: 0712.3272, 0810.0012; 

Donagi, Guffin, Katz, ES  
arXiv: 1110.3751, 1110.3752)

* = [ ]Ax Bx
Cy Dywhere for  a set of constant  matricesA, B, C, D 2 × 2

and  column vectors of homog’ coordsx, y



One way to compute quantum sheaf cohomology, for Fano spaces, 
is using GLSMs.

(McOrist, Melnikov arXiv:0712.3272, 0810.0012)

Basic idea is the same:  under RG flow, the GLSM flows onto a Coulomb branch, 
where the OPE ring rel’ns can be computed as the critical locus of a  

(twisted one-loop effective) superpotential.

W̃ = ∑
a

Υa ln (q−1
a ∏

i

(det Mi)Qa
i )

where  are matrices encoding tangent bundle deformations.Mi = Mi(σa)

In abelian cases it is of the form

Critical locus:  
∂W̃
∂Υa

= 0 ⟹ ∏
i

(det Mi(σ))Qa
i = qa

and  is a (0,2) Fermi superfield (part of (2,2) ).Υa σa



Critical locus:  
∂W̃
∂Υa

= 0 ⟹ ∏
i

(det Mi(σ))Qa
i = qa

Example (already mentioned):  ℙ1 × ℙ1

The q.s.c. ring relations are    ,   det(Ax + By) = q1 det(Cx + Dy) = q2

Example:  G(k, n)
Deform tangent bundle to :ℰ 0 ⟶ S* ⊗ S ⟶ ℂn ⊗ S ⟶ ℰ ⟶ 0*

where  * : ωb
a ↦ Ai

jω
b
aϕ j

b + ωb
bBi

jϕ
j
a

The q.s.c relations are then     det (Aσa + BTrσ) = ( − )k−1qa
(Guo, Lu, ES arXiv: 1512.08586)

which for   reduce to       , 
defining      as seen previously.

ℰ = TX (σa)n = ( − )k−1qa

QH∙(G(k, n))



Quantum sheaf cohomology is now known for 

• Fano toric varieties

• Grassmannians

• flag manifolds

all with bundle = deformation of tangent bundle.

(math = Donagi, Guffin, Katz, ES, arXiv: 1110.3751;  
physics = McOrist, Melnikov arXiv: 0712.3272, 0810.0012)

(classical ring math = Guo, Lu, ES, arXiv: 1605.01410;  
physics of qsc = Guo, Lu, ES arXiv: 1512.08586)

(physics = Guo arXiv: 1808.00716)

More general cases are all open.



There is also a notion of mirror symmetry for (0,2) supersymmetric theories,  
known as (0,2) mirror symmetry.

Just as ordinary mirror symmetry relates pairs of CYs , 
(0,2) mirror symmetry relates pairs , 

where  are CYs and  are holomorphic bundles such that 

X, Y
(X, ℰ), (Y, ℱ)

X, Y ℰ → X, ℱ → Y
ch2(ℰ) = ch2(TX), ch2(ℱ) = ch2(TY)

Relation:  A/2 on    =   B/2 on (X, ℰ) (Y, ℱ)

H∙(X, ∧∙ ℰ*) = H∙(Y, ∧∙ ℱ)

which for  ,   reduces to standard Hodge diamond flip.ℰ = TX ℱ = TY



Horizontal axis:  h1(ℰ) − h1(ℰ*)

Vertical axis:  h1(ℰ) + h1(ℰ*)

for examples with  of rank 4ℰ

(0,2) mirror symmetry:

Some numerical evidence for (0,2) mirrors:

(Blumenhagen, Schimmrigk, Wisskirchen, 
hep-th/9609167)

Nowadays there exist (limited) proposals for mirror constructions for 2d (0,2) theories.
(see e.g. Blumenhagen, Schimmrigk, Wisskirchen, hep-th/9609167, Blumenhagen, Sethi hep-th/9611172,  

Adams, Basu, Sethi hep-th/039226,  
Melnikov, Plesser arXiv: 1003.1303; Gu, Guo, ES arXiv: 1908.06036)



For (0,2) GLSMs describing Fano spaces,  
(limited) proposals exist for (0,2) mirrors as (0,2) Landau-Ginzburg models.

Example: ℙ1 × ℙ1

Recall we deform the tangent bundle to  defined by ℰ
0 ⟶ 𝒪2 ⟶ 𝒪(1,0)2 ⊕ 𝒪(0,1)2 ⟶ ℰ ⟶ 0*

* = [ ]A B
C Dwhere for  a set of constant  matricesA, B, C, D 2 × 2

W = Υ (Y0 + Y1 − t0) + Υ̃ (Ỹ0 + Ỹ1 − t1) +
1

∑
i=0

Fi (Ei(σ, σ̃) − exp(−Yi)) +
1

∑
i=0

F̃j (Ej(σ, σ̃) − exp(−Ỹj))
If restrict to diagonal  then can write a mirror (0,2) LG modelA, B, C, D, (Gu, Guo, ES  

arXiv: 1908.06036)

Ei(σ, σ̃) = aiσ + biσ̃, Ẽi(σ, σ̃) = ciσ + diσ̃, A = diag(a0, a1), etcwhere
 are (0,2) Fermi superfieldsΥi, Fi σ(2,2) ↦ σ(0,2), Υ(0,2) Y(2,2) ↦ Y(0,2), F(0,2)



We have several talks at this meeting on various aspects of 2d (0,2) theories, 
including talks of Gukov, Litvinov, Franco.



Shout-out: Trialities (Gadde, Gukov, Putrov arXiv: 1306.4320)

Briefly:

A (0,2) theory on      with bundle   G(k, n) S⊕N ⊕ (Q*)2k+N−n ⊕ (det S*)⊕2

is IR equivalent to

a (0,2) theory on      with bundle   G(n − k, N) S⊕2k+N−n ⊕ (Q*)n ⊕ (det S*)⊕2

and also to

a (0,2) theory on      with bundle   G(N − n + k,2k + N − n) S⊕n ⊕ (Q*)N ⊕ (det S*)⊕2

for suitable values of ,  
where  is the universal subbundle and  the univ’ quotient bundle.

k, n, N
S Q

I believe we’ll hear more about triality in S. Franco’s talk.



Shout-out:  GLSMs with H flux, non-Kahler heterotic compactifications

GLSMs, esp (0,2) susy GLSMs, describing backgrounds with H flux have a long history, 
(see e.g. Adams, Ernebjerg, Lapan hep-th/0611084, Adams, Guarrera arXiv: 0902.4440, Adams, Lapan arXiv: 0908.4294, 

Adams, Dyer, Lee, arXiv: 1206.5815, Quigley, Sethi, arXiv: 1107.0714, Melnikov, Quigley, Sethi, Stern, arXiv: 1212.1212,  
Caldeira, Maxfield, Sethi arXiv: 1810.01388)

The details are well beyond the scope of this talk, 
but definitely deserve mention.



Part 4: Quantum K theory



For me personally, quantum K theory first came to my attention in GLSMs 
through the work of (Jockers, Mayr arXiv: 1808.02040, 1905.03548).

(I’m under the impression that it has also appeared elsewhere in physics  
— I apologize to everyone this survey is glossing over.)

Analogous to other examples in this survey, 
in many cases quantum K theory can be computed using Coulomb branch techniques.

Basic idea:

Consider a 3d GLSM, on a 3-mfld of the form . 
quantum K theory arises as OPEs of Wilson lines around the , 

moving parallel to one another along the base .

S1 × Σ2
S1

Σ2



Consider a 3d GLSM, on a 3-mfld of the form . 
quantum K theory arises as OPEs of Wilson lines around the , 

moving parallel to one another along the base .

S1 × Σ2
S1

Σ2

To compute those OPEs, 
one does a Kaluza-Klein reduction along the . 

One gets an effective low-energy 2d theory, 
with an infinite tower of fields.

S1

Regularizing the sum of their contributions to the 
2d twisted one-loop effective superpotential 

effectively changes ordinary log’s to dilogarithms .Li2

The Wilson line OPE relations are the critical loci of that 2d twisted superpotential.



Example: ℙn

W̃ = (ln q)(ln x) +
n+1

∑
i=1

Li2(x) for pertinent Chern-Simons level

where x = exp(2πiRσ) for  = radius of R S1

Critical locus of :W (1 − x)n+1 = q

This is the QK ring relation for .  Identify .ℙn x ∼ S ∼ 𝒪(−1)

Take the limit : R → 0 x = exp(2πiRσ) ↦ 1 + 2πiRσ

q = Rn+1q2d

so (1 − x)n+1 = q becomes σn+1 ∝ q2d

which is the QH ring relation.



Example:  G(k, n)

W̃ =
k
2

k

∑
a=1

(ln xa)2 −
1
2 (

k

∑
a=1

ln xa)
2

+ (ln( − )k−1q)
k

∑
a=1

ln xa + n
k

∑
a=1

Li2(xa)

for pertinent Chern-Simons level

Critical locus:

( − )k−1q(xa)k = (1 − xa)n(
k

∏
b+1

xb)

where xa = exp(2πiRσa)

(Still present:  Weyl group ( ) orbifold, excluded locus  for )Sk σa ≠ σb a ≠ b

Symmetrize using Vieta:
n−i

∑
r=0

eℓ−r(x) er(x) = eℓ(T) + qen−k(x)δℓ,n−k where  are -equivariant parametersT (ℂ*)n



Example:  G(k, n)
n−i

∑
r=0

eℓ−r(x) er(x) = eℓ(T) + qen−k(x)δℓ,n−k where  are -equivariant parametersT (ℂ*)n

Interpretation:

eℓ(x) =
∧ℓ (ℂn/S)

(1 − q)−1 ∧ℓ (ℂn/S)

ℓ < n − k

ℓ = n − k{
so the ring relations become

n−k−1

∑
r=0

∧ℓ−r (S) ⋆ ∧r (ℂn/S) +
1

1 − q
∧ℓ−(n−k) S ⋆ det(ℂn/S) = ∧ℓ ℂn +

1
1 − q

det(ℂn/S)δℓ,n−k

or after simplification
λy(S) ⋆ λy(ℂn/S) = λy(ℂn) − yn−k q

1 − q
det(ℂn/S) ⋆ (λy(S) − 1)

where λy(S) = 1 + yS + y2 ∧2 S + ⋯



Example:  G(k, n)

λy(S) ⋆ λy(ℂn/S) = λy(ℂn) − yn−k q
1 − q

det(ℂn/S) ⋆ (λy(S) − 1)
(Gu, Mihalcea, ES, Zou, arXiv: 2008.04909, 2208.01091)

There exists an analogous presentation of QK for partial flag manifolds:

(Gu, Mihalcea, ES, Xu, Zhang, Zou, to appear)

λy(Si) ⋆ λy(Si+1/Si) = λy(Si+1) − yki+1−ki
qi

1 − qi
det(Si+1/Si) ⋆ (λy(Si) − λy(Si−1))

To summarize: the QK ring of the Grassmannian  can be presented  
in terms of the relation

G(k, n)

where  is a universal subbundle of rank Si ki

You’ll hear more about this in Weihong Xu’s talk.



One detail I’ve glossed over:  Chern-Simons levels

There exists a Chern-Simons level for which the theory duplicates standard QK. 
It’s generally suspected that other choices of CS levels correspond to  

level structures in the sense of (Ruan, Zhang arXiv: 1804.06552), 
but I for one don’t know the precise dictionary.



Another detail I’ve glossed over:  Wilson line OPEs

There has also been a great deal of work on this subject, 
independent of quantum K theory per se. 

See for example work of Closset, Kim, and others.



In 2d, we’ve discussed ordinary mirror symmetry & (0,2) mirror symmetry, 
and how they can be used to compute quantum cohomology.

In 3d there are also pertinent dualities, such as 3d mirror symmetry.
The details are, unfortunately, beyond the scope of this survey.



Other speakers on various aspects of quantum K theory include 
Koroteev, Lee, Xu, 

and related work in 3d GLSMs will be discussed by 
Closset, Jockers, Litvinov.

We’ll also hear about related notions in integrable systems 
in talks by Koroteev, Gu.



Questions for the future:

Can quantum K theory and quantum sheaf cohomology be linked?

The boundary of a 3d N=2 theory hosts a 2d (0,2) theory.

One could imagine moving bulk operators to the boundary and using 
bulk/boundary correspondence to describe  

quantum sheaf cohomology  (of the 2d (0,2) susy boundary) 
as a module over 

quantum K theory  (of the 3d N=2 susy theory).

Problem: the bulk operators are Wilson lines, not local operators (unlike boundary).

Math interpretation of 2d (0,2) Wilson lines in terms of q.s.c. ?



One last shout-out:  rigorous approaches to GLSMs

I’ve focused on physics in this talk, 
but there have also been mathematically rigorous approaches to GLSMs, 

see e.g. (Fan, Jarvis, Ruan arXiv: 0712.4021, 0712.4025, 1506.02109, 1603.02666, …)

We will hear more about such constructions in talks by 
Fan, Segal, Liu, Favero.



Thank you for your time, 
and enjoy the workshop!


