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Main theme:

* Two-dimensional theories with finite global 1-form symmetries
= disjoint union of theories with no 1-form symmetry (‘universes’).

This is Decomposition (Hellerman et al '06)

* Gauging the 1-form symmetry = projection onto components.
(ES 1911.05080)



Secondary theme:

Two-dimensional theories with global 1-form symmetries have several descriptions:
* Gauge theory w/ trivially-acting subgroup
* Restriction on instanton sectors

» Sigma models on gerbes
— fiber bundles with fibers = G\ = BG

* Couplinga QFT toa TQFT

We'll see in this talk how decomposition (into ‘universes’)
implements a projection on nonperturbative sectors (*‘multiverse interference effect”),

relating some of these pictures.



Outline:

* Brief overview of 1-form symmetries in 2d theories

* Brief review of decomposition of 2d theories w/ (finite, global) 1-form symmetries

For the rest of the talk, | want to focus on one (or if time, two) simple concrete examples:

1. An orbifold with a 1-form symmetry
 Explicit description of decomposition
» Explicitly gauge the 1-form symmetry

2. Pure nonsusy SU(2) Yang-Mills

» Explicit description of decomposition This only scratches the surface —
» Explicitly gauge the 1-form symmetry there are more ex’s, more kinds of ex’s,

and fun applications,

but only time in this talk for a few basics.



What is a one-form symmetry?

Often described in terms of actions on defects,

but in this talk, we’ll focus on them in local QFTs.
For this talk, intuitively, this will be a "group’ that exchanges nonperturbative sectors.

Example: G gauge theory in which massless matter inv’'t under K C G
(K assumed finite & abelian)

Then, nonperturbative sectors are invariant under
(G — bundle) +— (G — bundle) ® (K — bundle)
A— A+ A

This is the symmetry, involving an action of "group’ of K—bundles.

That group is denoted BK or K1) »-groups



Suppose you have a 2d QFT w/ a finite global 1-form symmetry.

An old result: (Hellerman et al '06)

such theories decompose into disjoint unions of theories w/o 1-form symmetry.

.et’s make that concrete....



Decomposition in 2d gauge theories (Hellerman et al '06)

This is an old story, but sometimes not appreciated, so I'll review....

Gauge theory version:

S’pose have G—gauge theory, G semisimple, with finite X C G acting trivially.

For simplicity, assume K is in the center. Has B K symmetry.

QFT(G—gauge theory) = H QFT (G/K—gauge theory w/ discrete theta angles)

char’s K
Example: pure SU(2) = SO(3), +SO(3)_
where £ denote discrete theta angles (w,)

(Another version exists for NLSMs.)

One effect is a projection on nonperturbative sectors: o
projection operator

S [pAlesp=S)ew [0 [wxd)] = [Dajen-5) (Yoo 0 [wntt)

ek Disioint sum | ) Ve K




Decomposition in 2d gauge theories

Since 2000, decomposition has been checked in many examples in many ways. Examples:

* GLSM'’s: mirrors, quantum cohomology rings (Coulomb branch)
(T Panteyv, ES, hep-th/0502053)

* Orbifolds: partition f’'ns, massless spectra, elliptic genera (T Pantev, ES '05)
* Open strings, K theory (Hellerman et al hep-th/0606034)

* Susy gauge theories w/ localization ES 1404.3086)
* Nonsusy pure Yang-Mills ala Migdal

* Plus version for 4d theories w/ 3-form symmetries  (Tanizaki, Unsal, 1912.01033)

Applications:

* Predictions for Gromov-Witten theory (checked by H-H Tseng, Y Jiang, etc starting '08)

* Approximate 1-form symmetries used to understand phases of some GLSMs

: , , (Caldararu et al 0700.2855, Hori 11, ...)
* Moduli spaces (Donagietal, 17...) 709-3955



Decomposition in 2d gauge theories

A recent computation: vacua of pure susy gauge theories (Gu, ES, Zou 2005.10845)

For pure G /K gauge theory, get susy vacua for one discrete theta angle; susy broken for others.

Group Theta IR tw’ chiral R charges
Examplesz SU(k)/Zk —(1/2)k(k —1) mod k 2,3,4,..k
SO@Ak) 7,  |kak-1) mod2, 0 mod2 | 2k; 2, 4,6, .., 4k -2
SO@4k+2)/7, 2k(2k — 1) mod 4 2k+1; 2, 4, 6, ..., 4k
Sp(2k)/Zy | (1/2)k(k+1) mod 2 2,4,6, ..., 2k
Ee¢/Z5 0 mod 3 2,5,6,8,9,12
E; /7y | mod 2 2,6, 8,10, 12, 14,18

For that one value, IR same as pure G gauge theory

Consistent w/ decomposition: G = || (G/K),
PEK



Suffice to say, decomposition is well-established.

Next, | will walk through a simple example,
first to demonstrate decomposition explicitly,

then to describe gauging of the one-form symmetry.

Example: Orbifold [X/D4| in which the Z, center acts trivially.

— has BZy (1-form) symmetry

Dy/Zo = Za X Zo so this is closely related to a Z, x Z, orbifold

Decomposition predicts

CFT ([X/D4]) = CFT ([X/Z3 X Za)wjoas.) || CFT ((X/Zs x Zs]as.)

(consequence of a general formula.)

Let’s check this explicitly....



Example, contd

Compute the partition function of [X/D4]

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zo = 7o X Zy = {1,a,b,ab}  where a = {a,az} etc

1
Z0X/D) = 5o Y Zun where Zy = o [0

‘ 4‘ g,h€D4,gh=hg n

Since z acts trivially,
Z 4.1 is symmetric under multiplication by z

2=/l ~ -l - M -~
Z h

‘I hz ‘I hz

<

This is the BZ5 1-form symmetry.



Example, contd
Compute the partition function of [X/D.]

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zo = 7o X Zy = {1,a,b,ab}  where a = {a,az} etc

1
Z0X/D) = 5o Y Zun where Zy = o [

‘ 4‘ g,h€Dy,gh=hg b

Each D, twisted sector that appears is the same as a Z» x Z» twisted sector,

appearing with multiplicity |Z2]° = 4,

. . . which do not appear.

Restriction on nonperturbative sectors

except for the sectors




Example, contd
Compute the partition function of [X/D.]

Z(|X/Dy4|) = Zo|? (Z([X /7o x 7)) — (some twisted sectors))

|
DO
N
>
T~
N
N
X
N
N

|) — (some twisted sectors))

Different theory than Z4y x Z5 orbifold



Example, contd
Compute the partition function of [X/D.]

Z(|X/Dy4|) = Zo|? (Z([X /7o x 7)) — (some twisted sectors))

2(Z(|X/Zs X Zs3|) — (some twisted sectors))

Discrete torsion is H=(Zo x Zo,U(1)) = Zs,

and acts as a sign on the twisted sectors

- . = . A . which were omitted above.
b ab ab

Z(|X/Dy4]) = Z([ X/ X Lo|wjoar.) + Z(| X/ Lo X Lalav.)

Adding the components projects out some sectors — interference effect.



Example, contd
Compute the partition function of [X/D.]

Z(|X/Dy4|) = Zo|? (Z([X /7o x 7)) — (some twisted sectors))

|
DO
N
>
T~
N
N
X
N
N

|) — (some twisted sectors))

Discrete torsion is H=(Zo x Zo,U(1)) = Zs,

and acts as a sign on the twisted sectors

- . = . A . which were omitted above.
b ab ab

Z(|X/Dy4|) = Z(|X/ L2 X Lo|wjoas.) + Z([X/Z2 X Zala.t.)

Matches prediction of decomposition

CFT ([X/Ds4]) = CFT ([X/Z2 X Zs]w/oa.t.) H CFT (| X/Z X Zs]av.)



Example, contd
CFT ([X/D4]) = CFT ([X/Zs X Zalwjoas.) || CFT ((X/Z2 x Zs)as.)

At the level of operators, one reason for this is that the theory admits projection operators:

Let 7 denote the (dim 0) twist field associated to the trivially-acting Z,:

Massless spectra....



Example, contd

Massless spectra for X = T° (T Pantev, ES "05)

Massless spectrum of D4 orbifold
2 1 1

O O O O O O
O 54 O O 5§51 O O 3 O
2 54 54 2 = 1 3 3 1 + 1 5§51 51 1
O 54 O O 51 O O 3 O
O O O O O O
2 1 1
/ spectrum of Zy x Zy orb’ spectrum of Zy x Zy orb’
Signals mult’ components / w/o d.t w/ d.t

cluster decomp’ violation
matching the prediction of decomposition

CFT ([X/D4]) = CFT ([X/Z3 X Za)wjoas.) || CFT ((X/Z2 x Zs)as.)



Example, contd

Next: gauge BZ-

In broad brushstrokes,

1

Z ([[X/D4]/BG]) = €l

Z (sectors twisted by gerbe)

(G—gerbes

gh hgz

Here,

Z(X/Dd/BL) = 2 3 e<z>(
z€H?2(X,Zs) I

/

sum over phase \
sector twisted by gerbe

(banded) gerbes (analogue of d.t.)



Example, contd

Z([X/Di/BLa)) = 3 e<z>( D3 ‘ )

| 2| z€H?2(X,Zs5) gh=hgz

= 2o

The 9 ‘ are gerbe-twisted orbifold twisted sectors gh = hgz
h

For z in the center of the orbifold group,

aib
‘ — g h ‘ so z preserved.

chd
(More generally, modular transformations map z to a conjugate.)

SL(2,7

The phases ¢(z) form a group homomorphism: €: Z, — U(1), €(gh) = €(g)e(h)

(consistent with multiloop factorization)



Example, contd

Z ([[X/D4]/BZs]) = Zl 3 (

Zl zeHz(E,Zz)
— 7,

> o ﬂ)

gh hgz

= ordinary partition function Z([X/D,])
h = 2(Z(|X/Zy x Zs]) — (some twisted sectors))

z# 1:  Only contributing sectors are 2 (plus perm’s from
i I B
mult’ by 2’s)
b ab ab

This reproduces the sectors excluded from the Z, x Z5 orbifold:

‘A -H 'l
b ab ab




Example, contd

Z([X/Di/BLa)) = 3 e<z>(‘ ] )
h

Zo|

z€H?(X,Z2) gh=hgz
1 | (excluded) ) (excluded) |
= 2e(+1) | Z(| X /2o X Z + 2¢(—1
21 2600 (20720 x 2a)) = 5D ) 20 GETD

where €(4+1) = +1 in all cases
Put this together:

7 Z(X/Za < Za) = Z(X/22 X )

the partition function of the Z, x Zs orbifold without discrete torsion.

e(=1) =+1:  Z([[X/D4]/BZ,]) =

e(—1)=—-1: Z([[X/D4]/BZs]) = partition function of the Z, x Z, orbifold

with discrete torsion



Example, contd

_ ‘Zzz‘ Z(X/Z2 X Za]) = Z([X/Zs x Zs))

the partition function of the Zy x Zs orbifold without discrete torsion.

e(—1) =+1:  Z([[X/D4|/BZs))

e(—1) =—-1: Z([[X/D4]/BZs]) = partition function of the Z, x Z, orbifold

with discrete torsion

Recall decomposition in this case:

CFT ([X/D4]) = CFT ([X/Zs X Zs)wjoas.) || CFT ((X/Z2 x Zs]as.)

Result: gauging the 1-form symmetry has projected onto the components

Furthermore, this is a general story — we’ll see another example next.



Another example of decomposition:

Pure nonsusy 2d SU(2) Yang-Mills

Decomposition: SU(2) = SO(3)+ + SO(3)- due to global BZ, center symmetry

(Migdal, Rusakov)

Z(SU(2)) = Z(dim R)*~?9 exp(—AC5(R)) Sum over all SU(2) reps
R

Z(SO(3)4+) = » (dimR)* 9 exp(—AC,(R)) Sum over all SO(3) reps
R

(Tachikawa "13)

Z(SO(3)_) = Z(dim R)2~29 exp(— AC,(R)) Sum over all SU(2) reps
R that are not SO(3) reps

Result: Z(SU(2)) = Z(SO(3).) + Z(SO(3)_)

In fact, this is easy to generalize...



Another example of decomposition:

Pure nonsusy 2d G Yang-Mills

More generally, it G has center K,

a pure 2d nonsusy G—gauge theory has BK symmetry,
and decomposes as

G = H (G/K)e

0cK

where the @ are discrete theta angles,

coupling to analogues of Stiefel-Whitney classes.

Hilbert spaces...



Another example of decomposition:

Pure nonsusy 2d G Yang-Mills
Hilbert spaces:

The Hilbert space of a pure G YM theory is #Z(G) = L2 class tf'nson G

These decompose under action of center:  f(gz) = 0(2)f(g)
# ((G/IK)y) = Lz class f'ns on G such that f(gz) = 0(2)f(g)

Asaresult, #Z(G) = Z% ((G/K)y)

0cK

which is consistent with decomposition: G = [] (G/K),
heEK

Next, I'll outline how to gauge BK to project onto decomposition components.



Another example of decomposition:

Pure nonsusy 2d G Yang-Mills

Broadly speaking, the partition function of a BK-gauged theory has the form

1
— Y d9)2()

‘ | z€H?(K)=K

where Z(z) is the partition f'n in sector twisted by K-gerbe z,

and €(z) is a phase

We'll write e(z) = exp(—ilz) ford € K

We'll define Z(z) next....



Another example of decomposition:

Pure nonsusy 2d G Yang-Mills
To define the gerbe-twisted gauge theory partition f'n, we’ll need "twisted caps.
Ordinary cap:

D)/ Zen(®) = S (dim Rxn(l) exp(~ACH ()

R

Zon — / AU Z cap(U) Zeap(U) = 3 (dim R)? exp(—ACy(R))
R
Twisted cap:

Zcap,iw(U, 2) = Y (dim R)xr(U) exp(iw(R)(2)) exp(—ACs(R))
R

Z(z) = » (dim R)*>* exp(iw(R)(2)) exp(—ACa(R))
R

where Yr(zU) = expw(R)(2))yr(U) w = 'n-ality’ of representation R



Another example of decomposition:

Pure nonsusy 2d G Yang-Mills

Putting this together,
Z(G/BEK.\) = \Tla S (2)2(2)
2€H2(K)=K

projects onto rep’s of n-ality 4

= ) (dimR)* 9 exp(—AC2(R))
Rw(R)=M\

= Z((G/K)A)

Thus, gauging BK w/ phase determined by 4 selects one component of the decomposition

G =[] (G/K),

0cK



So far:

I've reviewed decomposition,
a property of 2d QFTs with finite global 1-form symmetry,

and the gauging of that 1-form symmetry.
What about QFTs in other dimensions?

* 4d theories w/ finite global 3-form symmetries — Tanizaki, Unsal, 1912.01033

* Conjecture same for QFTs in d dims w/ finite global (d-1)-form symmetries, d > 1



So far:

* Conjecture same for QFTs in d dims w/ finite global (d-1)-form symmetries, d > 1

To that end,

1. Involves a (d-1)-form, which couples to a domain wall

(analogous to Bousso-Polchinski 'o0o, ...)

2. Consistent with reduction on circle:

The (d-1)-dim theory has a (d-2)-form symmetry,
as expected:

if the d-dim’l theory decomposes, its reduction on a circle should decompose too.

[s there any math here?....



Mathematical interpretation:
So far I've just talked abstractly about 2d theories & 1-form symmetries.

This has a mathematical interpretation: “gerbes”

A G—gerbe is a fiber bundle whose fibers are copies of BG.

A sigma model on a G—gerbe has a global BG symmetry,
just as a sigma model on a G—bundle has a global G symmetry,

from translations on the fibers.

Furthermore, BG = [point/G]

so whenever a group acts trivially,

you should expect a gerbe structure (1-form symmetry) somewhere.



Mathematical interpretation:

Twenty years ago, | was interested in studying

"sigma models on gerbes’ as possible sources of new string compactifications.

Potential issues, since solved:

construction of QFT; cluster decomposition; moduli;

mod’ invariance & unitarity in orbifolds; potential presentation-dependence.

What we eventually learned was that these theories are well-defined,
but,
are disjoint unions of ordinary theories, at least in (2,2) susy cases,

because of decomposition.

Not really new compactifications, but instead: GW predictions, GLSM phases.



Mathematical interpretation:

Finally, let me conclude with a schematic of gauging BG,

and why it should result in an ordinary theory:

B
TBG

12

X




Summary:

* Brief overview of 1-form symmetries in 2d theories

* Brief review of decomposition of 2d theories w/ 1-form symmetries

Some simple concrete examples:

1. An orbifold with a 1-form symmetry
 Explicit description of decomposition
» Explicitly gauge the 1-form symmetry

2. Pure nonsusy SU(2) Yang-Mills

 Explicit description of decomposition
» Explicitly gauge the 1-form symmetry



Last but not least, we're running an online workshop on GLSMs

on August 17-21, 2020:

https://indico.phys.vt.edu/e/glsms2020

'T’hank you!


https://indico.phys.vt.edu/e/glsms2020
https://indico.phys.vt.edu/e/glsms2020

In what sense is the "group’ of K—bundles, BK, a group? (K abelian)
Let P, Q be two K —bundles with transition functions gns, hags

Product: PR Q ~ ¢gaphas

Well-defined?  9as ~ 5a(gas)ss"

sO  Yaphap ~ Sa(gaﬁ)sgl(h(xﬁ)
= Sa(gaﬁhaﬁ)sgl if K is abelian.

So, as long as K abelian, have a well-defined product.

Inverses, identity, etc follow similarly.

Just one catch: everything only holds up to isomorphism.
PP 12 PRIXP, etc

Not quite an ordinary group; instead, is ~ 2-group”



Aside:

More general 2-groups than just BK exist.

Example: extensions

/\

1 — BU(1l) — SU((2) — SU((2) — 1

A

Possible extensions SU(2) classified by k£ € H?(SU(2))

This is the 2-group underlying WZW models.

Return









