Monopoles, scattering, generalized symmetries.

Diego Delmastro

30-Mar-2024
arXiv:2306.07318 with M. van Beest, P. Boyle Smith, Z. Komargodski, D. Tong. arXiv:2312.17746 with M. van Beest, P. Boyle Smith, R. Mouland, D. Tong.

screen

Background.

Background.

- Main motivation: recently understood symmetries of gauge theories.
- Massless QED in $4 d$: gauge group $U(1)$ plus N_{f} Dirac fermions.
- 40's: $G=S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \times U(1)_{A}$.
- 60's, triangle diagrams: $\operatorname{SU}\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \rightarrow S U\left(N_{f}\right)_{V}$ and $U(1)_{A} \rightarrow \varnothing$. [Adler-Bell-Jackiw]
- '14, higher-form: $U(1)^{(1)}$ acting on 't Hooft lines. [Gaiotto-Kapustin-Seiberg-Willett]
- '18, higher groups: $U(1)^{(1)} \hookrightarrow G \rightarrow S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}$ is not broken. [Córdova-Dumitrescu]
- '22, higher-categorical: $U(1)_{A}$ is not broken, but acts (non-invertibly) on 't Hooft lines. [Choi-Lam-Shao, Córdova-Ohmori]
- In regular scattering theory, with only electrically charged particles, the generalized symmetries behave like regular symmetries.
- In monopole scattering, these new features play an essential role.

Background.

- Classical scattering of electric particles off magnetic targets:

$$
V(r)=\frac{\ell(\ell+1)-(m q / 2)^{2}-m q \hat{\boldsymbol{r}} \cdot \boldsymbol{S}}{r^{2}} \quad \begin{aligned}
& \text { [Aharony-Cuomo- } \\
& \begin{array}{l}
\text { Komargodski-Mezei- } \\
\text { Raviv-Moshe] }
\end{array}
\end{aligned}
$$

- Same as electric-electric scattering, except:
- Angular momentum is bounded $\ell \geq \frac{1}{2}|m q|$, since $\boldsymbol{L}=\boldsymbol{L}_{\text {orb }}+\boldsymbol{L}_{\mathrm{EM}}$ with $\left|\boldsymbol{L}_{\mathrm{EM}}\right| \sim \frac{1}{2}|\boldsymbol{B} \times \boldsymbol{E}| \sim \frac{1}{2}|m q|$.
- Electric-magnetic interaction decays like $1 / r^{2}$ instead of $1 / r$.

Background.

- Scalars: $\hat{\boldsymbol{r}} \cdot \boldsymbol{S}=0$. Then, $V(r) \sim+1 / r^{2}$, repulsive.
- Fermions: $\hat{\boldsymbol{r}} \cdot \boldsymbol{S}= \pm 1 / 2$. Same, $V(r) \sim+1 / r^{2}$, except for helicity-polarized s-wave:

$$
\ell=\frac{1}{2}|q m| \text { and } \operatorname{sign}(\hat{\boldsymbol{r}} \cdot \boldsymbol{S})=\operatorname{sign}(m q) \quad \Rightarrow \quad V(r) \equiv 0
$$

- Conclusion: electric-magnetic scattering is boring, except for helicity-polarized, spherically symmetric fermions. These experience no classical force. Quite sensitive to quantum effects and UV physics.

Background.

- Callan and Rubakov studied the quantum dynamics of such fermions.
- Main conclusion: protons decay at $\Gamma \sim 1 / \Lambda_{\mathrm{QCD}}$.
- What do they decay into? Private letter from Witten to Callan: if you follow their math, it seems that $p+M \longrightarrow M+\frac{1}{2} \pi^{+}+\frac{1}{2} e^{+}$.

$$
\begin{aligned}
& e_{L}^{+}+M \rightarrow K L+K e_{R}^{+}+K \not K L_{1 R}+K 2 L_{2_{R}}+K{ }_{2} d_{3_{L}} \\
& \mathrm{u}_{1 \mathrm{R}}+\mathrm{M} \rightarrow \frac{1}{2}\left(\mathrm{u}_{1 \mathrm{~L}} \overline{\mathrm{u}}_{2 \mathrm{R}} \bar{d}_{3 \mathrm{~L}} \mathrm{e}_{\mathrm{L}}^{+}\right)+\mathrm{M},
\end{aligned}
$$

- Generalized symmetries resolve the issue.

A simple toy model.

A simple toy model.

- Consider a bunch of free fermions in $1+1$ dimensions. The Dirac equation reads

$$
\left(\partial_{t}+\gamma^{\star} \partial_{x}\right) \psi=0 \quad \Rightarrow \quad \begin{array}{r}
\psi_{L}=\psi_{L}(t-x) \\
\psi_{R}=\psi_{R}(t+x)
\end{array}
$$

Left-handed particles move to the left, and right-handed particles to the right.

- Symmetry: $O(N)_{L} \times O(N)_{R}$.
- Let us put the system on the half line, with some boundary condition at $x=0$

A simple toy model.

- If we send ψ_{L} towards the boundary, it will bounce off and become some excitation of ψ_{R}

$$
\psi_{L} \longrightarrow \mathcal{O}\left(\psi_{R}\right)
$$

whose details depend on the choice of boundary condition.

- Naive puzzle: such scattering processes seem incompatible with $O(N)_{L} \times O(N)_{R}$ conservation. The in-state is charged under $O(N)_{L}$ but not $O(N)_{R}$, and the other way around for the out-state. It is impossible to write an operator $\mathcal{O}\left(\psi_{R}\right)$ that has the same quantum numbers as ψ_{L}.
- The resolution is straightforward: the symmetry $O(N)_{L} \times O(N)_{R}$ has an 't Hooft anomaly, hence there are no symmetric boundary conditions. The boundary explicitly breaks this symmetry.

A simple toy model.

- Sketch: the currents that generate $O(N)_{L} \times O(R)_{R}$ are

$$
j_{L}=\psi_{L} \psi_{L}^{\dagger}, \quad j_{R}=\psi_{R} \psi_{R}^{\dagger}
$$

- These are composites. Because of short-distance divergences, $j_{L}^{\prime}=\delta^{\prime}(x-t)$ and $j_{R}^{\prime}=\delta^{\prime}(x+t)$.
- Roughly speaking, the contact term makes the boundary charged under the symmetry:

$$
Q_{L}([0, \epsilon])=\int_{0}^{\epsilon} j_{L} \mathrm{~d} x=\int_{0}^{\epsilon} x j_{L}^{\prime} \mathrm{d} x \equiv \frac{1}{2}
$$

- See [Thorngren-Wang] for the proper proof.

A simple toy model.

- A more subtle puzzle: consider the subgroup $U(1) \subset O(N)_{L} \times O(N)_{R}$ with charges

$$
L: \psi_{3}, \psi_{4}, \quad R: \psi_{5}
$$

- This subgroup is anomaly-free:

$$
j^{\prime}=\left(3^{2}+4^{2}-5^{2}\right) \delta^{\prime} \equiv 0
$$

- As such, it does admit symmetric boundary conditions. It is possible to conserve this symmetry in scattering processes.

A simple toy model.

- This choice of boundary condition leads to an apparent paradox. Let us throw ψ_{3} towards the boundary. Then,
- Energy is conserved, so something has to be reflected back.
- $U(1)$ is conserved, so the out-going state must have charge 3.
- But the only right-moving particle ψ_{5} has charge 5!
- Naively, the only consistent scattering process is

$$
\psi_{3} \longrightarrow \frac{3}{5} \psi_{5}
$$

Conservation laws seem to ask for a fractional out-state!

- There is no operator in the right-moving Fock space with charges 3 or 4,

$$
Q\left(\psi_{5} \cdots \psi_{5}\right) \propto 5
$$

A simple toy model.

- Resolution: the spectrum of local excitations is much larger than the Fock space of ψ_{L}, ψ_{R}.
- In string theory, these additional states are known as the twisted sector, and their defining property is that they are multi-valued (their correlation functions have branch cuts):

$$
\mathcal{O}\left(e^{2 \pi i} z\right)=e^{2 \pi i \eta} \mathcal{O}(z)
$$

- The branch cut adds charge to the endpoint:

$$
Q(\sim \sim \mathcal{O})=\sim \sim \sim \mathcal{O}=Q(\mathcal{O})+\text { Disc. }
$$

A simple toy model.

- One can show that there is a unique twist operator with the same charge as ψ_{3}, namely ψ_{5} with twist $\eta=1 / 5$.
- The scattering process then looks like this:

- The S-matrix is somewhat non-standard: it turns regular (local) operators into twist fields:

$$
S: \mathcal{H} \rightarrow \mathcal{H}_{1 / 5}
$$

- This is fine: twist fields behave, for the most part, like regular fields, the only difference are extra phases as we move them around each other.

Monopole scattering.

Monopole scattering.

- Consider N_{f} Dirac fermions in $3+1 d$. The symmetries are

$$
\left(S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \times U(1)_{A}\right) \ltimes U(1)_{m}^{(1)}
$$

- A Dirac fermion has two chiral components, e_{L}, e_{R}, whose charges under the gauge group and symmetry group are

	e_{L}	e_{R}
$U(1)_{\mathrm{EM}}$	1	-1
$S U\left(N_{f}\right)_{L}$	\square	\bullet
$S U\left(N_{f}\right)_{R}$	\bullet	\square
$U(1)_{A}$	1	1

Monopole scattering.

- Let us take a heavy monopole and place it at the origin. We send a lepton, either e_{L} or e_{R}, and measure the outcome. The scattering process is

$$
\psi+M \longrightarrow M+\mathcal{O}
$$

where \mathcal{O} is some operator with the same charges as ψ. Our task is to identify this operator.

- The Dirac equation reads

$$
(i \not \partial+\not A) \psi=0, \quad A_{\phi}=\frac{m}{r}(1-\cos \theta)
$$

where $m \in \mathbb{Z}$ is the magnetic charge of the monopole.

Monopole scattering.

- As reviewed in the introduction, the helicity-polarized s-wave is special.
- In QFT language

$$
\left(\partial_{t}+\gamma^{\star} \partial_{r}\right) \int_{S^{2}} \psi \equiv 0
$$

- Hence, e_{L} describes incoming radiation and e_{R} describes outgoing radiation.

Monopole scattering.

- The s-wave carries the following quantum numbers:

| | $U(1)_{\mathrm{EM}}$ | $S U\left(N_{f}\right)_{L}$ | $S U\left(N_{f}\right)_{R}$ | $U(1)_{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Incoming: $\int_{S^{2}} e_{L}$ | 1 | \square | \bullet | 1 |
| Outgoing: $\int_{S^{2}} e_{R}$ | -1 | \bullet | \square | 1 |

- Formally identical to our toy model: we have perturbations that move in a single direction, but they carry different quantum numbers. The monopole plays the role of the boundary.
- Here we face out first puzzle. The incoming wave is charged under $\operatorname{SU}\left(N_{f}\right)_{L}$, but the outgoing one is not, so the out-state will never conserve $\operatorname{SU}\left(N_{f}\right)_{L} \times \operatorname{SU}\left(N_{f}\right)_{R}$!

Monopole scattering.

- Resolution: the symmetry $\operatorname{SU}\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}$ is in a 2-group with $U(1)^{(1)}$.
- This implies that the symmetry is not conserved in scattering processes involving magnetically charged matter. The monopole explicitly breaks this symmetry.
- Only the anomaly-free subgroup $S U\left(N_{F}\right)_{V}$ is conserved. So we should look at

		$U(1)_{\mathrm{EM}}$	$S U\left(N_{f}\right)_{V}$	$U(1)_{A}$
Incoming:	$\int_{S^{2}} e_{L}$	1	\square	1
Outgoing:	$\int_{S^{2}} e_{R}$	-1	\square	1

Monopole scattering.

- It is still unclear what the correct out-state is:

$$
\begin{array}{llll}
M+e_{L} \longrightarrow M+e_{R} & U(1)_{\mathrm{EM}} & S U\left(N_{f}\right)_{V} & U(1)_{A} \\
M+e_{L} \longrightarrow M+e_{R}^{\dagger} & U(1)_{\mathrm{EM}} & S U\left(N_{f}\right)_{V} & U(1)_{A}
\end{array}
$$

- No operator

$$
\mathcal{O}=e_{R} \cdots e_{R} e_{R}^{\dagger} \cdots e_{R}^{\dagger}
$$

has the required quantum numbers under the three symmetries at the same time.

Monopole scattering.

- Exact same puzzle as in the toy model. People in the 80 s proposed fractional out-states.
- Our claim: the out-state is a twist field. We propose an out-state of the form

Monopole scattering.

- In the interior of S^{2} we place a $3 d$ branch cut that implements a rotation

$$
e_{L} \mapsto e^{2 \pi i / m N_{f}} e_{L}, \quad e_{R} \mapsto e^{2 \pi i / m N_{f}} e_{R}
$$

- The defect is just an axial rotation by an angle $1 / m N_{f}$. This defect is generically non-invertible.
- In the paper we give two arguments for this: 1) we compute the charge carried by Wilson lines in the $3 d$ Hall state TQFT and 2) we reduce on S^{2} to yield a $2 d$ problem very similar to the toy model from before.

Monopole scattering.

- The take-home-message is: monopole scattering requires the full machinery of generalized symmetries.
- Without these new symmetries there is an apparent paradox in which there is no possible out-state consistent with the conservation laws.
- If we take into account the full set of symmetries, a consistent answer does exist, albeit a rather non-trivial one: the S-matrix maps the regular Fock space into a twisted Fock space.
- In other words, incoming radiation formed by regular leptons becomes outgoing radiation formed by a field in a twisted sector, and there is a topological defect trailing it.
- This defect is non-invertible and hosts a $3 d$ TQFT inside (the Hall state).

Standard Model.

Standard Model.

- The gauge group is $S U(3) \times S U(2) \times U(1)$. Maximal torus $U(1)^{4}$ so \mathbb{Z}^{4} classification of monopoles.
- Because of $W^{ \pm}$-condensation, most of these are unstable:

$$
V(r)=\frac{\ell(\ell+1)-(m q / 2)^{2}-m q \hat{\boldsymbol{r}} \cdot \boldsymbol{S}}{r^{2}} \leq 0
$$

- Leptons are massive, and quarks are confined. Neglect this by working at $E \gg 1 \mathrm{TeV}$.
- Modulo this, same setting.

Standard Model.

- Minimal stable monopole $m=1$ under $U(1)_{\mathrm{EM}}$. Out-state is twisted by a gauge symmetry instead of a flavor one. Also, poorly understood story involving zero-modes.
- Higher-charge monopoles $m>1$: the outcome is not fixed by symmetry alone, it depends on the UV completion.
- A preliminary argument indicates that no twist operator has the correct quantum numbers so the answer must involve something entirely new. Back to the drawing board...

Monopole scattering.

Thanks!

