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Background.



Background.

Main motivation: recently understood symmetries of gauge theories.

Massless QED in 4d : gauge group U(1) plus Nf Dirac fermions.

▶ 40’s: G = SU(Nf )L × SU(Nf )R × U(1)A.

▶ 60’s, triangle diagrams: SU(Nf )L × SU(Nf )R → SU(Nf )V and U(1)A → ∅. [Adler–Bell–Jackiw]

▶ ’14, higher-form: U(1)(1) acting on ’t Hooft lines. [Gaiotto–Kapustin–Seiberg–Willett]

▶ ’18, higher groups: U(1)(1) ↪→ G ↠ SU(Nf )L × SU(Nf )R is not broken. [Córdova–Dumitrescu]

▶ ’22, higher-categorical: U(1)A is not broken, but acts (non-invertibly) on ’t Hooft lines.
[Choi–Lam–Shao, Córdova–Ohmori]

In regular scattering theory, with only electrically charged particles, the generalized
symmetries behave like regular symmetries.

In monopole scattering, these new features play an essential role.
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Background.

Classical scattering of electric particles off magnetic targets:

V (r) =
ℓ(ℓ+ 1)− (mq/2)2 −mq r̂ · S

r2

Same as electric-electric scattering, except:

▶ Angular momentum is bounded ℓ ≥ 1
2 |mq|, since L = Lorb + LEM with

|LEM| ∼ 1
2 |B × E | ∼ 1

2 |mq|.

▶ Electric-magnetic interaction decays like 1/r2 instead of 1/r .
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Background.

Scalars: r̂ · S = 0. Then, V (r) ∼ +1/r2, repulsive.

Fermions: r̂ · S = ±1/2. Same, V (r) ∼ +1/r2, except for helicity-polarized s-wave:

ℓ =
1

2
|qm| and sign(r̂ · S) = sign(mq) ⇒ V (r) ≡ 0

Conclusion: electric-magnetic scattering is boring, except for helicity-polarized, spherically
symmetric fermions. These experience no classical force. Quite sensitive to quantum effects
and UV physics.
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Background.

Callan and Rubakov studied the quantum dynamics of such fermions.

Main conclusion: protons decay at Γ ∼ 1/ΛQCD.

What do they decay into? Private letter from Witten to Callan: if you follow their math, it
seems that p +M −→ M + 1

2π
+ + 1

2e
+.

Generalized symmetries resolve the issue.
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A simple toy model.



A simple toy model.

Consider a bunch of free fermions in 1+1 dimensions. The Dirac equation reads

(∂t + γ⋆∂x)ψ = 0 ⇒ ψL = ψL(t − x)
ψR = ψR(t + x)

Left-handed particles move to the left, and right-handed particles to the right.

Symmetry: O(N)L × O(N)R .

Let us put the system on the half line, with some boundary condition at x = 0

ψL

ψR
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A simple toy model.

If we send ψL towards the boundary, it will bounce off and become some excitation of ψR

ψL −→ O(ψR)

whose details depend on the choice of boundary condition.

Naive puzzle: such scattering processes seem incompatible with O(N)L × O(N)R
conservation. The in-state is charged under O(N)L but not O(N)R , and the other way
around for the out-state. It is impossible to write an operator O(ψR) that has the same
quantum numbers as ψL.

The resolution is straightforward: the symmetry O(N)L × O(N)R has an ’t Hooft anomaly,
hence there are no symmetric boundary conditions. The boundary explicitly breaks this
symmetry.
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A simple toy model.

Sketch: the currents that generate O(N)L × O(R)R are

jL = ψLψL
†, jR = ψRψR

†

These are composites. Because of short-distance divergences, j ′L = δ′(x − t) and
j ′R = δ′(x + t).

Roughly speaking, the contact term makes the boundary charged under the symmetry:

QL([0, ϵ]) =

∫ ϵ

0
jLdx =

∫ ϵ

0
xj ′Ldx ≡ 1

2

See [Thorngren-Wang] for the proper proof.
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A simple toy model.

A more subtle puzzle: consider the subgroup U(1) ⊂ O(N)L × O(N)R with charges

L : ψ3, ψ4, R : ψ5

This subgroup is anomaly-free:

j ′ = (32 + 42 − 52)δ′ ≡ 0

As such, it does admit symmetric boundary conditions. It is possible to conserve this
symmetry in scattering processes.
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A simple toy model.

This choice of boundary condition leads to an apparent paradox. Let us throw ψ3 towards
the boundary. Then,

▶ Energy is conserved, so something has to be reflected back.

▶ U(1) is conserved, so the out-going state must have charge 3.

▶ But the only right-moving particle ψ5 has charge 5!

Naively, the only consistent scattering process is

ψ3 −→ 3
5ψ5

Conservation laws seem to ask for a fractional out-state!

There is no operator in the right-moving Fock space with charges 3 or 4,

Q(ψ5 · · ·ψ5) ∝ 5
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A simple toy model.

Resolution: the spectrum of local excitations is much larger than the Fock space of ψL, ψR .

In string theory, these additional states are known as the twisted sector, and their defining
property is that they are multi-valued (their correlation functions have branch cuts):

O(e2πiz) = e2πiηO(z)

The branch cut adds charge to the endpoint:

Q( )O = O = Q(O) + Disc.
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A simple toy model.

One can show that there is a unique twist operator with the same charge as ψ3, namely ψ5

with twist η = 1/5.

The scattering process then looks like this:

ψ3

=⇒
ψ5

The S-matrix is somewhat non-standard: it turns regular (local) operators into twist fields:

S : H → H1/5

This is fine: twist fields behave, for the most part, like regular fields, the only difference are
extra phases as we move them around each other.

Diego Delmastro Monopoles, scattering, generalized symmetries. 12 / 23



Monopole scattering.



Monopole scattering.

Consider Nf Dirac fermions in 3 + 1d . The symmetries are

(SU(Nf )L × SU(Nf )R × U(1)A)⋉ U(1)
(1)
m

A Dirac fermion has two chiral components, eL, eR , whose charges under the gauge group
and symmetry group are

eL eR
U(1)EM 1 −1
SU(Nf )L •
SU(Nf )R •
U(1)A 1 1
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Monopole scattering.

Let us take a heavy monopole and place it at the origin. We send a lepton, either eL or eR ,
and measure the outcome. The scattering process is

ψ +M −→ M +O

where O is some operator with the same charges as ψ. Our task is to identify this operator.

The Dirac equation reads

(i /∂ + /A)ψ = 0, Aϕ =
m

r
(1− cos θ)

where m ∈ Z is the magnetic charge of the monopole.
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Monopole scattering.

As reviewed in the introduction, the helicity-polarized s-wave is special.

In QFT language

(∂t + γ⋆∂r )

∫
S2

ψ ≡ 0

Hence, eL describes incoming radiation and eR describes outgoing radiation.
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Monopole scattering.

The s-wave carries the following quantum numbers:

U(1)EM SU(Nf )L SU(Nf )R U(1)A

Incoming:

∫
S2

eL 1 • 1

Outgoing:

∫
S2

eR −1 • 1

Formally identical to our toy model: we have perturbations that move in a single direction,
but they carry different quantum numbers. The monopole plays the role of the boundary.

Here we face out first puzzle. The incoming wave is charged under SU(Nf )L, but the
outgoing one is not, so the out-state will never conserve SU(Nf )L × SU(Nf )R !
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Monopole scattering.

Resolution: the symmetry SU(Nf )L × SU(Nf )R is in a 2-group with U(1)(1).

This implies that the symmetry is not conserved in scattering processes involving
magnetically charged matter. The monopole explicitly breaks this symmetry.

Only the anomaly-free subgroup SU(NF )V is conserved. So we should look at

U(1)EM SU(Nf )V U(1)A

Incoming:

∫
S2

eL 1 1

Outgoing:

∫
S2

eR −1 1
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Monopole scattering.

It is still unclear what the correct out-state is:

M + eL −→ M + eR

M + eL −→ M + eR
†

U(1)EM SU(Nf )V U(1)A

U(1)EM SU(Nf )V U(1)A

No operator
O = eR · · · eReR † · · · eR †

has the required quantum numbers under the three symmetries at the same time.
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Monopole scattering.

Exact same puzzle as in the toy model. People in the 80s proposed fractional out-states.

Our claim: the out-state is a twist field. We propose an out-state of the form

∫
S2

eR

MonopoleMonopole

∫
S2

eL
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Monopole scattering.

In the interior of S2 we place a 3d branch cut that implements a rotation

eL 7→ e2πi/mNf eL, eR 7→ e2πi/mNf eR

The defect is just an axial rotation by an angle 1/mNf . This defect is generically
non-invertible.

In the paper we give two arguments for this: 1) we compute the charge carried by Wilson
lines in the 3d Hall state TQFT and 2) we reduce on S2 to yield a 2d problem very similar
to the toy model from before.
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Monopole scattering.

The take-home-message is: monopole scattering requires the full machinery of generalized
symmetries.

Without these new symmetries there is an apparent paradox in which there is no possible
out-state consistent with the conservation laws.

If we take into account the full set of symmetries, a consistent answer does exist, albeit a
rather non-trivial one: the S-matrix maps the regular Fock space into a twisted Fock space.

In other words, incoming radiation formed by regular leptons becomes outgoing radiation
formed by a field in a twisted sector, and there is a topological defect trailing it.

This defect is non-invertible and hosts a 3d TQFT inside (the Hall state).
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Standard Model.



Standard Model.

The gauge group is SU(3)× SU(2)× U(1). Maximal torus U(1)4 so Z4 classification of
monopoles.

Because of W±-condensation, most of these are unstable:

V (r) =
ℓ(ℓ+ 1)− (mq/2)2 −mq r̂ · S

r2
≤ 0

Leptons are massive, and quarks are confined. Neglect this by working at E ≫ 1 TeV.

Modulo this, same setting.
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Standard Model.

Minimal stable monopole m = 1 under U(1)EM. Out-state is twisted by a gauge symmetry
instead of a flavor one. Also, poorly understood story involving zero-modes.

Higher-charge monopoles m > 1: the outcome is not fixed by symmetry alone, it depends
on the UV completion.

A preliminary argument indicates that no twist operator has the correct quantum numbers
so the answer must involve something entirely new. Back to the drawing board...
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Monopole scattering.

Monopole

FQH state

eL

eR

Thanks!
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