An introduction to heterotic mirror symmetry

Eric Sharpe Virginia Tech I'll begin today by reminding us all of ordinary mirror symmetry.

Most basic incarnation:

String theory on a Calabi-Yau X

= String theory on a Calabi-Yau Y

Ex: X = quintic threefold, $\mathbb{P}^4[5]$ Y = $\mathbb{P}^4[5]/\mathbb{Z}_5^3$

 $\dim(X) = \dim(Y)$

Relates Hodge numbers: $h^{p,q}(X) = h^{p,n-q}(Y)$

Also swaps perturbative & nonpert' corrections: made computing GW invariants easy.

Plan for today:

Outline a generalization of mirror symmetry, (involving heterotic strings,) that is perhaps not so well-known.

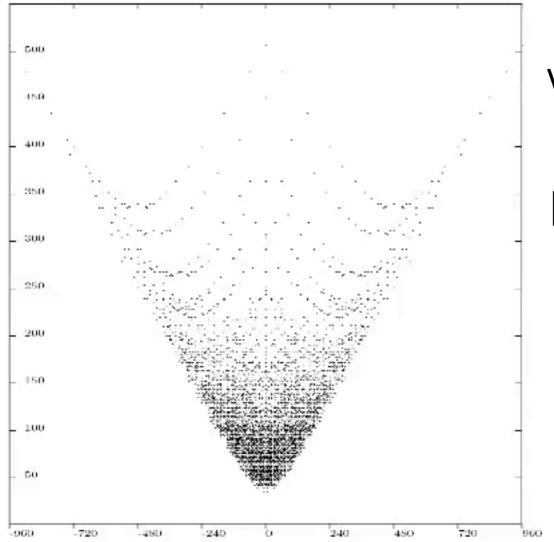
- Brief review of ordinary mirrors, then heterotic analogues
- Some other more exotic dualities
- Heterotic version of quantum cohomology:
 quantum sheaf cohomology

Let's quickly review some of the reasons physicists believe in and think about mirror symmetry, en route to talking about the `heterotic' generalization.

Some of the original checks....

Numerical checks of mirror symmetry

Plotted below are data for a large number of Calabi-Yau 3-folds.



Vertical axis: $h^{1,1} + h^{2,1}$

Horizontal axis: $2(h^{1,1} - h^{2,1})$ = 2 (# Kahler - # cpx def's)

Mirror symmetry exchanges $h^{1,1} \leftrightarrow h^{2,1}$

==> symm' across vert' axis

(Klemm, Schimmrigk, NPB 411 ('94) 559-583)

Constructions of mirror pairs

One of the original methods: in special cases, can quotient by a symmetry group. "Greene-Plesser orbifold construction"

(Greene-Plesser '90)

Example: quintic $Q_5 \subset \mathbb{P}^4 \xrightarrow{\text{mirror}} Q_5/\mathbb{Z}_5^3$

More general methods exist....

Constructions of mirror pairs

Batyrev's construction:

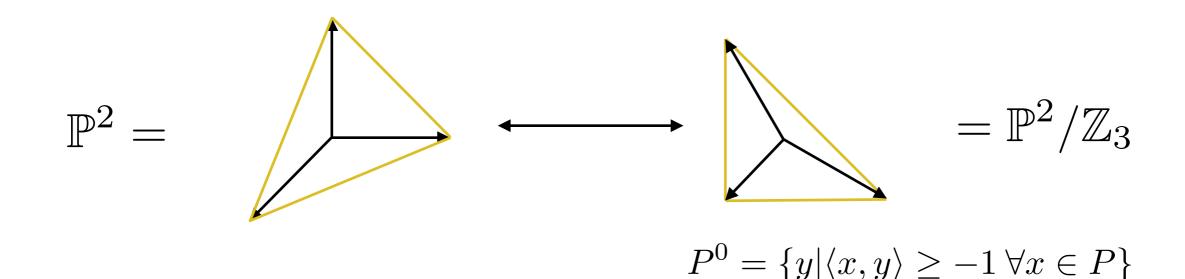
For a hypersurface in a toric variety, mirror symmetry exchanges

polytope ofdual polytopeambientfor ambient t.v.toric varietyof mirror

Constructions of mirror pairs

Example of Batyrev's construction:

 T^2 as degree 3 hypersurface in \mathbb{P}^2



Result: degree 3 hypersurface in \mathbb{P}^2 , mirror to \mathbb{Z}_3 quotient of degree 3 hypersurface (matching Greene-Plesser '90)

Ordinary mirror symmetry is pretty well understood nowadays.

- lots of constructions
- both physics and math proofs
 Givental / Yau et al in math
 Morrison-Plesser / Hori-Vafa in physics

However, there are some extensions of mirror symmetry that are still being actively studied....

Ordinary mirror symmetry is a property of type II strings, or worldsheets with "(2,2) supersymmetry."

It is also believed to apply to **heterotic** strings, whose worldsheets have "(0,2) supersymmetry."

(2,2): specified, in simple cases, by a Kahler mfld $\,X$

(0,2): specified, in the same simple cases, by a Kahler manifold Xtogether with a holomorphic bundle $\mathcal{E} \to X$ such that $\operatorname{ch}_2(\mathcal{E}) = \operatorname{ch}_2(TX)$

(Recover (2,2) in special case that $\mathcal{E} = TX$.)

Heterotic aka (0,2) mirror symmetry involves bundles + spaces.

Analogues of topological field theories:

True TFT's based on (0,2) theories do not exist, **but**,

there do exist pseudo-topological field theories with closely related properties, at least in special cases.

A/2 model: Exists when $\det \mathcal{E}^* \cong K_X$ States counted by $H^{\bullet}(X, \wedge^{\bullet} \mathcal{E}^*)$ Reduces to A model on (2,2) locus ($\mathcal{E} = TX$) B/2 model: Exists when $\det \mathcal{E} \cong K_X$ States counted by $H^{\bullet}(X, \wedge^{\bullet} \mathcal{E})$

Reduces to B model on (2,2) locus ($\mathcal{E} = TX$)

 $A/2(X, \mathcal{E}) \cong B/2(X, \mathcal{E}^*)$

((0,2) susy)

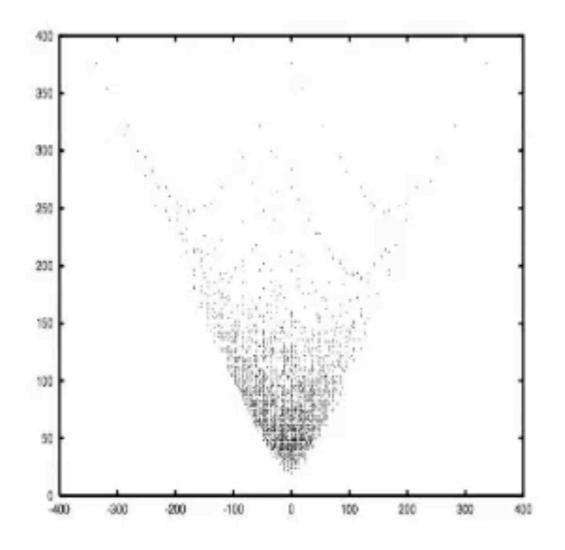
How should this work?

Nonlinear sigma models with (0,2) susy defined by space *X*, with hol' vector bundle $E \rightarrow X$

(0,2) mirror defined by space Y, w/ bundle F. dim X = dim Y rk E = rk F A/2(X, E) = B/2(Y, F) $H^{p}(X, \wedge^{q} E^{*}) = H^{p}(Y, \wedge^{q} F)$ (moduli) = (moduli)

When E=TX, should reduce to ordinary mirror symmetry.

Not as much known about heterotic/(0,2) mirror symm', though a few basics have been worked out.



Example: numerical evidence Horizontal: $h^1(\mathcal{E}) - h^1(\mathcal{E}^*)$ Vertical: $h^1(\mathcal{E}) + h^1(\mathcal{E}^*)$ where \mathcal{E} is rk 4

(Blumenhagen, Schimmrigk, Wisskirchen, NPB 486 ('97) 598-628)

((0,2) susy)

Constructions include:

- Blumenhagen-Sethi '96 extended Greene-Plesser orbifold construction to (0,2) models handy but only gives special cases
- Adams-Basu-Sethi '03 repeated Hori-Vafa-Morrison-Plesser-Style GLSM duality in (0,2)

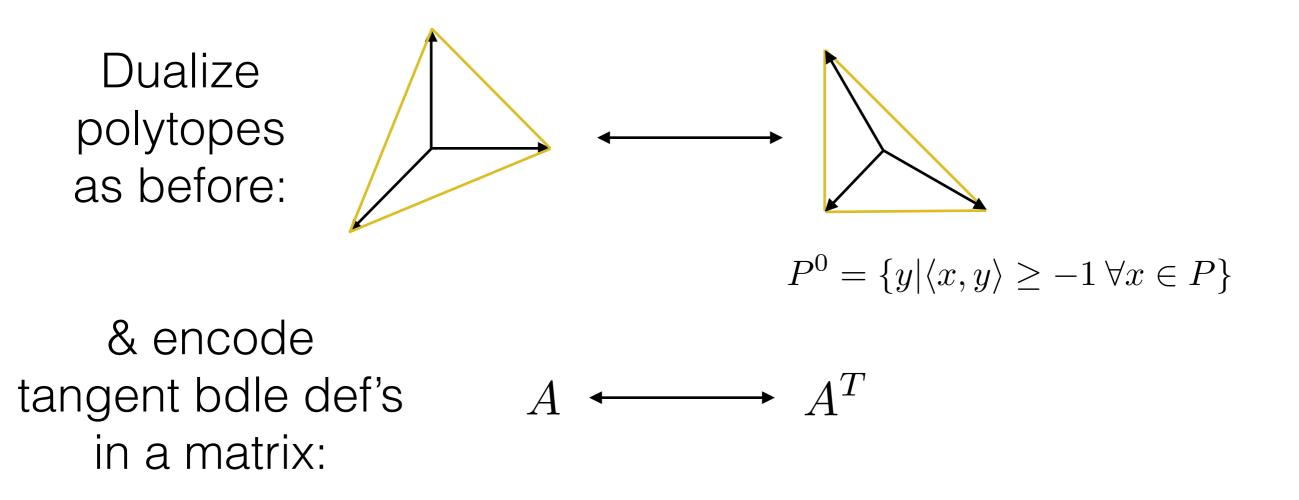
but results must be supplemented by manual computations;

(0,2) version does not straightforwardly generate examples

More recent progress includes a version of Batyrev's construction....

((0,2) susy)

 Melnikov-Plesser '10 extended Batyrev's construction & monomialdivisor mirror map to include def's of tangent bundle, for special ('reflexively plain') polytopes



Progress, but still don't have a general construction.

Now let's turn to a few other dualities, which may or may not be related....

Gauge bundle dualization duality ((0,2) susy) (Nope, not a typo....)

Nonlinear sigma models with (0,2) susy defined by space *X*, with hol' vector bundle $E \rightarrow X$

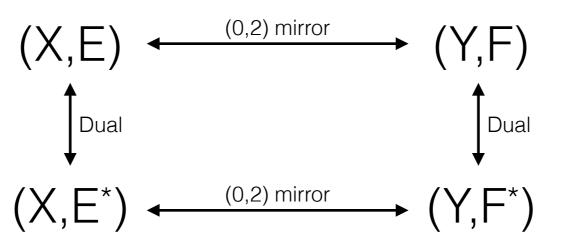
Duality:
$$CFT(X, E) = CFT(X, E^*)$$

ie, replacing the bundle with its dual is an invariance of the theory.

Gauge bundle dualization duality ((0,2) susy)

How is this related to (0,2) mirrors?

Maybe orthogonal:



On the other hand,

both exchange A/2, B/2 models, both flip sign of left U(1)... ...maybe it's also a sort of (0,2) mirror.

More exotic variations....

Triality

((0,2) susy)

(Gadde-Gukov-Putrov '13-'14)

It has been proposed that *triples* of certain (0,2) theories might be equivalent.

$$Gauge bundle \longrightarrow Target space$$

$$S^{A} \oplus (Q^{*})^{2k+A-n} \oplus (\det S^{*})^{2} \longrightarrow G(k,n)$$

$$S^{2k+A-n} \oplus (Q^{*})^{n} \oplus (\det S^{*})^{2} \longrightarrow G(n-k,A)$$

$$S^{n} \oplus (Q^{*})^{A} \oplus (\det S^{*})^{2} \longrightarrow G(A-n+k,2k+A-n)$$

are conjectured to all be equivalent, for n, k, A such that the geometries above are all sensible.

Moving on....

Triality

((0,2) susy)

How is this related to (0,2) mirrors?

Maybe notion of (0,2) mirrors is richer, & more variations exist to be found:

$$\longleftrightarrow (X_1, E_1) \longleftrightarrow (X_2, E_2) \longleftrightarrow (X_3, E_3) \longleftrightarrow (X_4, E_4) \longleftarrow$$

Triality seems to be in this spirit.

So far I've outlined (0,2) mirrors and some possibly related dualities.

Next: analogue of curve counting, Gromov-Witten....

Quantum sheaf cohomology is the heterotic version of quantum cohomology — defined by space + bundle. (Katz-ES '04, ES '06, Guffin-Katz '07, ...)

On the (2,2) locus, where bundle = tangent bundle, encodes Gromov-Witten invariants.

Off the (2,2) locus, Gromov-Witten inv'ts no longer relevant. Mathematical GW computational tricks no longer apply. No known analogue of periods, Picard-Fuchs equations.

New methods needed....

... and a few have been developed.

(A Adams, J Distler, R Donagi, J Guffin, S Katz, J McOrist, I Melnikov, R Plesser, ES,)

Minimal area surfaces: standard case ("type II strings")

Schematically: For X a space, \mathcal{M} a space of holomorphic S² --> X

we compute a "correlation function" in A model TFT

$$\langle \mathcal{O}_1 \cdots \mathcal{O}_k \rangle = \int_{\mathcal{M}} \omega_1 \wedge \cdots \wedge \omega_k$$

where $\mathcal{O}_i \sim \omega_i \in H^{p_i, q_i}(\mathcal{M})$
= $\int_{\mathcal{M}} (\text{top form on } \mathcal{M})$

which encodes minimal area surface information.

Such computations are at the heart of Gromov-Witten theory.

Minimal area surfaces: heterotic case

Schematically: For X a space, \mathcal{E} a bundle on X, \mathcal{M} a space of holomorphic S² -> X

$$\begin{split} \langle \mathcal{O}_1 \cdots \mathcal{O}_k \rangle &= \int_{\mathcal{M}} \tilde{\omega}_1 \wedge \cdots \wedge \tilde{\omega}_k \\ \text{where } \mathcal{O}_i \sim \tilde{\omega}_i \in H^{q_i} \left(\mathcal{M}, \wedge^{p_i} \mathcal{F}^* \right) \\ \mathcal{F} &= \text{sheaf of 2d fermi zero modes over } \mathcal{M} \\ \text{anomaly cancellation} \stackrel{\text{GRR}}{\Longrightarrow} \wedge^{\text{top}} \mathcal{F}^* \cong K_{\mathcal{M}} \\ &\text{hence, again,} \\ &= \int_{\mathcal{M}} (\text{top form on } \mathcal{M}) \qquad \text{(S Katz, ES, 2004)} \\ \text{This computation takes place in "A/2 model," a pseudo-topological field theory.} \end{split}$$

Correlation functions are often usefully encoded in `operator products' (OPE's).

Physics: Say $\mathcal{O}_A \mathcal{O}_B = \sum_i \mathcal{O}_i$ ("operator product") if all correlation functions preserved:

$$\langle \mathcal{O}_A \mathcal{O}_B \mathcal{O}_C \cdots \rangle = \sum_i \langle \mathcal{O}_i \mathcal{O}_C \cdots \rangle$$

Math: if interpret correlation functions as maps $\operatorname{Sym}^{\bullet} W \longrightarrow \mathbb{C}$ (where *W* is the space of \mathcal{O} 's) then OPE's are the kernel, of form $\mathcal{O}_A \mathcal{O}_B - \sum_i \mathcal{O}_i$

Examples:

Ordinary ("type	e II") case:
$X = \mathbb{P}^1 \times$	$\mathbb{P}^1 \qquad W = H^{1,1}(\mathbb{P}^1 \times \mathbb{P}^1) \cong \mathbb{C}^2 = \mathbb{C}\{\psi, \tilde{\psi}\}$
OPE's:	$\psi^2 = q, \tilde{\psi}^2 = \tilde{q}$
where	$q, \tilde{q} \sim \exp(-\operatorname{area})$
	$\longrightarrow 0$ in classical limit

Looks like a deformation of cohomology ring, hence called "quantum cohomology"

Examples:

Ordinary ("type II") case: $X = \mathbb{P}^1 \times \mathbb{P}^1$ OPE's: $\psi^2 = q, \ \tilde{\psi}^2 = \tilde{q}$ Heterotic case:

 $X = \mathbb{P}^1 \times \mathbb{P}^1$ \mathcal{E} a deformation of $T(\mathbb{P}^1 \times \mathbb{P}^1)$

Defin of $\mathcal{E}: 0 \longrightarrow W^* \otimes \mathcal{O} \xrightarrow{*} \mathcal{O}(1,0)^2 \oplus \mathcal{O}(0,1)^2 \longrightarrow \mathcal{E} \longrightarrow 0$ where $* = \begin{bmatrix} Ax & Bx \\ C\tilde{x} & D\tilde{x} \end{bmatrix} \begin{bmatrix} A, B, C, D & \text{const' } 2x2 \text{ matrices} \\ x, \tilde{x} & \text{vectors of homog' coord's} \end{bmatrix}$

Here,
$$W = H^1(X, \mathcal{E}^*) = \mathbb{C}^2 = \mathbb{C}\{\psi, \tilde{\psi}\}$$

OPE's: $\det \left(A\psi + B\tilde{\psi}\right) = q, \quad \det \left(C\psi + D\tilde{\psi}\right) = \tilde{q}$

Check: $\mathcal{E} = TX$ when $A = D = I_{2 \times 2}$, B = C = 0& in this limit, OPE's reduce to those of ordinary case *quantum sheaf cohomology*

To make this more clear, let's consider an

Example: classical sheaf cohomology on $\mathbb{P}^1 \times \mathbb{P}^1$

with gauge bundle E a deformation of the tangent bundle:

$$0 \to W^* \otimes O \xrightarrow{*} O(1,0)^2 \oplus O(0,1)^2 \to E \to 0$$

where $* = \begin{bmatrix} Ax & Bx \\ C\tilde{x} & D\tilde{x} \end{bmatrix}$ x, \tilde{x} homog' coord's on \mathbb{P}^1 's
and $W = \mathbb{C}^2$

Operators counted by $H^1(E^*) = H^0(W \otimes O) = W$

n-pt correlation function is a map $Sym^{n}H^{1}(E^{*})=Sym^{n}W \rightarrow H^{n}(\wedge^{n}E^{*})$ OPE's = kernel

Plan: study map corresponding to classical corr' f'n

Example: classical sheaf cohomology on $\mathbb{P}^1 \times \mathbb{P}^1$

with gauge bundle E a deformation of the tangent bundle:

$$0 \to W^* \otimes O \xrightarrow{*} O(1,0)^2 \oplus O(0,1)^2 \to E \to 0$$

where $* = \begin{bmatrix} Ax & Bx \\ C\tilde{x} & D\tilde{x} \end{bmatrix}$ x, \tilde{x} homog' coord's on \mathbb{P}^1 's
and $W = \mathbb{C}^2$

Since this is a rk 2 bundle, classical sheaf cohomology defined by products of 2 elements of $H^1(E^*) = H^0(W \otimes O) = W$. So, we want to study map $H^0(\operatorname{Sym}^2 W \otimes O) \to H^2(\wedge^2 E^*) = \operatorname{corr}'$ f'n

This map is encoded in the resolution

 $0 \to \wedge^2 E^* \to \wedge^2 Z \to Z \otimes W \to \operatorname{Sym}^2 W \otimes O \to 0$

Example: classical sheaf cohomology on $\mathbb{P}^1 \times \mathbb{P}^1$ $0 \to \wedge^2 E^* \to \wedge^2 Z \to Z \otimes W \to \operatorname{Sym}^2 W \otimes O \to 0$ Break into short exact sequences: $0 \to \wedge^2 E^* \to \wedge^2 Z \to S_1 \to 0$ $0 \to S_1 \to Z \otimes W \to \operatorname{Sym}^2 W \otimes O \to 0$

Examine second sequence:

induces $H^{\delta}(\mathbb{X} \otimes W) \to H^{0}(\operatorname{Sym}^{2}W \otimes O) \xrightarrow{\delta} H^{1}(S_{1}) \to H^{1}(\mathbb{X} \otimes W)$ Since Z is a sum of O(-1,0)'s, O(0,-1)'s,

hence $\delta: H^0(\operatorname{Sym}^2 W \otimes O) \xrightarrow{\sim} H^1(S_1)$ is an iso.

Next, consider the other short exact sequence at top....

Example: classical sheaf cohomology on $\mathbb{P}^1 \times \mathbb{P}^1$ $0 \to \wedge^2 E^* \to \wedge^2 Z \to Z \otimes W \to \operatorname{Sym}^2 W \otimes O \to 0$ Break into short exact sequences: $0 \rightarrow S_1 \rightarrow Z \otimes W \rightarrow Sym^2 W \otimes O \rightarrow 0$ $\delta : H^0(\operatorname{Sym}^2 W \otimes O) \to H^1(S_1)$ Examine other sequence: $0 \to \wedge^2 E^* \to \wedge^2 Z \to S_1 \to 0$

induces $H^1(\wedge^2 Z) \rightarrow H^1(S_1) \xrightarrow{\delta} H^2(\wedge^2 E^*) \rightarrow H^{\mathfrak{s}}(\wedge^2 Z)$ Since Z is a sum of O(-1,0)'s, O(0,-1)'s,

 $H^2(\wedge^2 Z) = 0$ but $H^1(\wedge^2 Z) = \mathbb{C} \oplus \mathbb{C}$

 $\Pi (\Lambda Z) = 0 \quad \text{Dut} \quad \Pi (\Lambda Z) = \mathbb{C} \oplus \mathbb{C}$

and so $\delta: H^1(S_1) \rightarrow H^2(\wedge^2 E^*)$ has a 2d kernel.

Now, assemble the coboundary maps....

Example: classical sheaf cohomology on $\mathbb{P}^1 \times \mathbb{P}^1$ $0 \to \wedge^2 E^* \to \wedge^2 Z \to Z \otimes W \to \operatorname{Sym}^2 W \otimes O \to 0$

Now, assemble the coboundary maps....

A classical (2-pt) correlation function is computed as $H^{0}(\operatorname{Sym}^{2}W \otimes O) \xrightarrow{\sim}{\delta} H^{1}(S_{1}) \xrightarrow{\sim}{\delta} H^{2}(\wedge^{2}E^{*})$

where the right map has a 2d kernel, which one can show is generated by $det(A\psi + B\tilde{\psi}), det(C\psi + D\tilde{\psi})$ where A, B, C, D are four matrices defining the def' E, and $\psi, \tilde{\psi}$ correspond to elements of a basis for W. Classical sheaf cohomology ring:

 $\mathbb{C}[\psi, \tilde{\psi}] / (\det(A\psi + B\tilde{\psi}), \det(C\psi + D\tilde{\psi}))$

Quantum sheaf cohomology

= OPE ring of the A/2 model

Instanton sectors have the same form, except X replaced by moduli space M of instantons, E replaced by induced sheaf F over moduli space M.

Must compactify M, and extend F over compactification divisor.

Within any one sector, can follow the same method just outlined....

In the case of our example, one can show that in a sector of instanton degree (a,b), the `classical' ring in that sector is of the form

Sym[•]W/(
$$Q^{a+1}, \tilde{Q}^{b+1}$$
)
where $Q = \det(A\psi + B\tilde{\psi}), \quad \tilde{Q} = \det(C\psi + D\tilde{\psi})$

Now, OPE's can relate correlation functions in different instanton degrees, and so, should map ideals to ideals.

To be compatible with those ideals,

$$\langle O \rangle_{a,b} = q^{a'-a} \tilde{q}^{b'-b} \langle O Q^{a'-a} \tilde{Q}^{b'-b} \rangle_{a',b'}$$

for some constants $q, \tilde{q} => OPE$'s $Q = q, \ \tilde{Q} = \tilde{q}$

— quantum sheaf cohomology rel'ns

General result:

(Donagi, Guffin, Katz, ES, '11)

For any toric variety, and any def' E of its tangent bundle,

$$0 \to W^* \otimes O \to \bigoplus_{Z^*} O(\vec{q}_i) \to E \to O$$

the chiral ring is

$$\prod_{\alpha} (\det M_{(\alpha)})^{Q_{\alpha}^{a}} = q_{a}$$

where the M's are matrices of chiral operators built from *.

So far, I've outlined mathematical computations of quantum sheaf cohomology, but GLSM-based methods also exist:

- Quantum cohomology ((2,2)): Morrison-Plesser '94
- Quantum sheaf cohomology ((0,2)): McOrist-Melnikov '07, '08

Briefly, for (0,2) case:

One computes quantum corrections to effective action of form

$$L_{\text{eff}} = \int d\theta^{+} \sum_{a} Y_{a} \log \left[\prod_{\alpha} (\det M_{(\alpha)})^{Q_{\alpha}^{a}} / q_{a} \right]$$

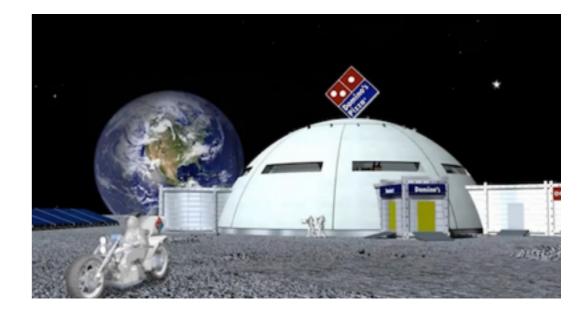
from which one derives
$$\prod_{\alpha} \left(\det M_{(\alpha)} \right)^{Q_{\alpha}^{a}} = q_{a}$$

— these are q.s.c. rel'ns — match math' computations

Long-term

More general constructions of (0,2) mirrors, & related duals, as current methods are limited

Generalize quantum sheaf cohomology computations to arbitrary compact Calabi-Yau manifolds



Generalize quantum sheaf cohomology...

State of the art: computations on toric varieties To do: compact CY's

Intermediate step: Grassmannians (work in progress)

Briefly, what we need are better computational methods.

Conventional GW tricks seem to revolve around idea that A model is independent of complex structure, not necessarily true for A/2.

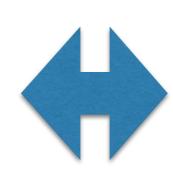
- McOrist-Melnikov '08 have argued an analogue for A/2
- Despite attempts to check (Garavuso-ES '13), still not well-understood

Mathematics

Physics

Geometry:

Gromov-Witten Donaldson-Thomas quantum cohomology etc



Supersymmetric, topological quantum field theories

Homotopy, categories:

derived categories stacks derived spaces

categorical equivalence

D-branes gauge theories sigma models w/ potential renormalization group flow