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'll begin today by reminding us all of ordinary mirror symmetry.

Most basic incarnation:

String theory on a Calabi-Yau X
= String theory on a Calabi-Yau Y

Ex: X = quintic threefold, P*[5] Y = P4[5] /73
dim(X) = dim(Y)

Relates Hodge numbers: AP9(X) = hAP"79(Y)

Also swaps perturbative & nonpert’ corrections:
made computing GW invariants easy.



Plan for today:

Qutline a generalization of mirror symmetry,
(involving heterotic strings,)
that Is perhaps not so well-known.

* Brief review of ordinary mirrors,
then heterotic analogues

e Some other more exotic dualities

e Heterotic version of quantum cohomology:
quantum sheaf cohomology



Let’'s quickly review some of the reasons physicists believe in
and think about mirror symmetry,
en route to talking about the heterotic’ generalization.

Some of the original checks....



Numerical checks of mirror symmetry

Plotted below are data for a large number of
Calabi-Yau 3-folds.

llllll

Vertical axis: ht.1 + h21

- Horizontal axis: 2(h'.T - h21)
= 2 (# Kahler - # cpx def’s)

22U

Mirror symmetry
exchanges h!.1 «— h2a

==> Symm’ across vert axis

(Klemm, Schimmrigk, NPB 411 ('94) 559-583)



Constructions of mirror pairs

One of the original methods:
INn special cases, can quotient by a symmetry group.
“Greene-Plesser orbifold construction”

(Greene-Plesser '90)

Example: quintic

Qs C P Qs /L3

More general methods exist....



Constructions of mirror pairs

Batyrev’'s construction:

For a hypersurface in a toric variety,
mirror symmetry exchanges

polytope of dual polytope
ambient for ambient t.v.
toric variety of mirror



Constructions of mirror pairs

Example of Batyrev’'s construction:

T2 as degree 3 hypersurface in P?

A

IP)Q: > > >\ :]P)Z/ZS

P’ = {y|(z,y) > —1Vz € P}

Result:
degree 3 hypersurface in P
mirror to
Z.3 quotient of degree 3 hypersurface

(matching Greene-Plesser '90)



Ordinary mirror symmetry is pretty well understood nowadays.

* |ots of constructions

* pboth physics and math proofs
Givental / Yau et al in math
Morrison-Plesser / Hori-Vafa in physics

However, there are some extensions of mirror symmetry that
are still being actively studied....



Ordinary mirror symmetry is a property of type |l strings,
or worldsheets with “(2,2) supersymmetry.”

It is also believed to apply to heterotic strings,
whose worldsheets have “(0,2) supersymmetry.”

(2,2): specified, in simple cases, by a Kahler mfld X

(0,2): specified, in the same simple cases,
by a Kahler manitold X
together with a holomorphic bundle £ — X
such that
ChQ (5) — Chg (TX)

(Recover (2,2) in special case that € =TX )

Heterotic aka (0,2) mirror symmetry involves bundles + spaces.



Analogues of topological field theories:

True TFT’s based on (0,2) theories do not exist,
but,
there do exist pseudo-topological field theories with closely
related properties, at least in special cases.

A/2 model: Exists when det&™ = Kx
States counted by H*®(X,A*E¥)
Reduces to A model on (2,2) locus (£ = T X)

B/2 model: Exists when deté = Kx

States counted by H®(X,A*E)
Reduces to B model on (2,2) locus (£ = T'X)

A/2(X,E) = B/2(X,EY)



(0,2) mirror symmetry ((0,2) susy )
How should this work??

Nonlinear sigma models with (0,2) susy defined by
space X, with hol’ vector bundle £ — X

(0,2) mirror defined by space Y, w/ bundle F.
dmX = dmY
KE = rkF
Al2( X, E) = B/2(Y, F)
H?(X,AEN)=H"(Y ,A'F)
(moduli) = (moduli)

When E=TX, should reduce to ordinary mirror symmetry.



(0,2) mirror symmetry

Not as much known about heterotic/(0,2) mirror symm’,
though a few basics have been worked out.

Example: numerical
| evidence

orizontal: h'(€) — h'(EF)

Vertical:  h'(&) + R (EF)

where £ Isrk 4

a0 AN a0 L L He

(Blumenhagen, Schimmrigk, Wisskirchen,
NPB 486 ('97) 598-628)



(0,2) mirror symmetry ((0,2) susy )

Constructions include:

Blumenhagen-Sethi '96 extended Greene-Plesser orbifold
construction to (0,2) models — handy but only gives special
Cases

Adams-Basu-Sethi ‘03 repeated Hori-Vafa-Morrison-Plesser-Style GLSM
duality in (0,2)

— but results must be supplemented by manual
computations;
(0,2) version does not straightforwardly generate examples

More recent progress includes a version of Batyrev's
construction....



(0,2) mirror symmetry ((0,2) susy )

* Melnikov-Plesser ‘10 extended Batyrev’'s construction & monomial-
divisor mirror map to include def’s of tangent bundle, for
special (‘reflexively plain®) polytopes

Dualize A
polytopes < .
as before:

P° = {y|{z,y) > —1Vx € P}

& encode
tangent bdle def’s A - - AT
IN a matrix:

Progress, but still don't have a general construction.



Now let’s turn to a few other dualities,
which may or may not be related....



Gauge bundle dualization duality ((0,2) susy)

(Nope, not a typo....)

Nonlinear sigma models wit
space X, with hol’ vector bu

N (0,2) susy defined by

ndle E — X

Duality: CFT(X,E) = CFT(X,E)

ie, replacing the bundle with its dual
IS an invariance of the theory.



Gauge bundle dualization duality ((0,2) susy)

How is this related to (0,2) mirrors?

Maybe orthogonal:
(X,E) < (0,2) mirror > (Y,F)

(X, E*) < (0,2) mirror > (Y, I:*)

On the other hand,
both exchange A/2, B/2 models, both tlip sign of left U(1)...

...maybe it's also a sort of (0,2) mirror.

More exotic variations....



Triality ((0,2) susy )

(Gadde-Gukov-Putrov '13-'14)

't has been proposed that triples of certain (0,2) theories
might be equivalent.

Gauge bundle —— Target space

SA @ (QF)*F A" @ (det S*)? — G(k,n)

S2EHA=R o (") @ (det S*)? — G(n — k., A)
S" B (Q*) @ (det S*)* — G(A—n+k,2k+ A —n)

are conjectured to all be equivalent, for n, k, A such that the
geometries above are all sensible.

Moving on....



Triality ((0,2) susy )

How is this related to (0,2) mirrors?

Maybe notion of (0,2) mirrors is richer,
& more variations exist to be found:

— (X1,E1) «—— (Xo,E2) «— (X3,E3) «— (X4,E4) «—

Triality seems to be in this spirit.



So far I've outlined (0,2) mirrors and some possibly related
dualities.

Next: analogue of curve counting, Gromov-Witten....



Review of quantum sheaf cohomology

Quantum sheaf cohomology is the heterotic version of

guantum cohomology — defined by space + bundle.
(Katz-ES '04, ES '06, Guffin-Katz '07, ....)

On the (2,2) locus, where bundle = tangent bundle,
encodes Gromov-Witten invariants.

Off the (2,2) locus, Gromov-Witten inv'ts no longer relevant.
Mathematical GW computational tricks no longer apply.
No known analogue of periods, Picard-Fuchs equations.

New methods needed....

... and a few have been developed.
(A Adams, J Distler, R Donagi, J Guffin, S Katz, J McOirist, | Melnikov, R Plesser, ES, ....)



Minimal area surfaces:
standard case (“type Il strings”)

Schematically: For X a space,
M a space of holomorphic $2 —> X

we compute a “correlation function”™ in A model TFT
00 = [ e
M
where O; ~ w; € HP"% (M)

= / (top form on M)
M

which encodes minimal area surface information.

Such computations are at the heart of Gromov-Witten theory.



Minimal area surfaces:
heterotic case

Schematically: For X a space, £ a bundle on X,
M a space of holomorphic S2 —> X

(O1---Op) = / W1 N\ A\ Qg
M

where O; ~ w; € HT (M, APV F™)

F = sheaf of 2d fermi zero modes over M

anomaly cancellation 2% atop 7+ ~ ¢\

hence, again,
— / (top form on M) (S Katz, ES, 2004)
M

This computation takes place in "A/2 model,” a pseudo-
topological field theory.



Correlation functions are often usefully encoded in
‘operator products’ (OPE’s).

Physics: Say OaOp = » O; (‘operator product”)

if all correlation functions preserved:
(OA050¢---) = Z<Oz’00"‘>

Math: It interpret correlation functions as maps
Sym*W — C
(where W is the space of O’s)

then OPE’s are the kernel, of form OaOp — Z O;



Examples:

Ordinary (“type II") case:
X =P xP! W = HYY(P' xPY) = C%2= C{y,¢}

~

OPE'’s: v = q, VP =G

where q,q ~ eXP(—aI‘ea)
— 0 In classical limit

Looks like a deformation of cohomology ring,
hence called "quantum cohomology”



Examples:

Ordinary (“type II") case: X = P! x P!

OPE’s: 1&2 = q, @ZQ = g
Heterotic case:

X = P! xP' & adeformation of T(P' x P!
Defnof: 0 — W0 = 01,0020 00,12 — £ — 0

N _ | Az Bz A,B,C,D const’ 2x2 matrices
W ere * = C~ D~ ~ : :
B x,x vectors of homog’ coord’s

Here, W = HYX,&*) = C? = C{y, ¢}
OPE's: det (A¢+Bzﬁ) — ¢, det ((Jwﬂw) _ G

Check: £€=TX when A=D=1,., B=C=0

& In this limit, OPE’s reduce to those of ordinary case
quantum sheaf cohomology



Review of quantum sheaf cohomology
To make this more clear, let's consider an

Example: classical sheaf cohomology on P' x P!

with gauge bundle E a deformation of the tangent bundle:

0->W ®0—->0(1,0°®0(0,1)" > E—0

Z>l<

where x| A By x,X homog’ coord’s on P''s
- Cx Dx

and W=C"
Operators counted by H'(E)=H"(W ®0)=W
n-pt correlation function is a map Sym"H'(E")=Sym"W — H"(A"E")

OPE’s = kernel
Plan: study map corresponding to classical corr’ 'n




Review of quantum sheaf cohomology
Example: classical sheaf cohomology on P' x P

with gauge bundle E a deformation of the tangent bundle:

0->W ®0—->0(1,0®0(0,1)>" > E—0

Z*

where A)f B)f x,X homog’ coord’s on P'‘s
- Cx Dx

and W =C"

Since this is a rk 2 bundle, classical sheat cohomology
defined by products of 2 elements of H'(E")=H"(W ®0)=W.

So, we want to study map H"Sym'W ®0)— H*(A°E") = corr’ f'n

This map Is encoded in the resolution
0N E SA°ZSZOW =Sym™W ®0 =0



Review of quantum sheaf cohomology

Example: classical sheaf conomology on P' x P
0N E SA°ZZOW -SymW ®0 -0

Break into short exact sequences:

0o>AE 5A°Z >S5 —0
0—-S—>ZOW —=Sym’W ®0 —0
Examine second seguence:
induces H%‘Z@A%/)%HO(Sym2W®0)iH1(S1)%H\‘\(\Z\Ci<)(‘)V)
Since Zis a sum of O(-1,0)’s, O(0,-1)’s,

hence & :H°(Sym>W ® 0)— H'(S,) is an iso.

Next, consider the other short exact sequence at top....



Review of quantum sheaf cohomology

Example: classical sheaf cohomology on P' x P
0N E SA°ZZOW -SymW ®0 -0
Break into short exact sequences:

O%SleZ@)W%Sysz@O%O
0:H"(Sym’W ®0)— H'(S,)
Examine other seqguence:
0>AE -A*Z—85—0
induces Hl(/\ZZ)%Hl(Sl)in(/\zE*)%H\%\iZ)
Since Zis a sum of O(-1,0)’s, O(0,-1)’s,
H*(A°Z)=0 but H'(A\*Z)=Ca®C
and so 0:H'(S)—>H(~"E’) has a 2d kernel.

Now, assemble the coboundary maps....



Review of quantum sheaf cohomology

Example: classical sheaf cohomology on P' x P
0N E SA°ZZOW -SymW ®0 -0

Now, assemble the coboundary maps....

A classical (2-pt) correlation function is computed as
H (Sym*W ®0)— H'(S,) = H*(A'E’)

where the right map has a 2d kernel, which one can show is
generated by
det(Ay + By), det(Cy + Dy)
where A, B, C, D are four matrices defining the det’ E,
and V.¥ correspond to elements of a basis for W.
Classical sheaf cohomology ring:

Cly .71/ (det(Ay + Byr).det(Cy + Dyr))



Review of quantum sheaf cohomology

Quantum sheaf coho
=0

mology

PE ring of the A/2 model

Instanton sectors have the same form,
except X replaced by moduli space M of instantons,
E replaced by induced sheaf F over moduli space M.

Must compactity M,
and extend F over compactification divisor.

*
ANPE =K,

ch,(E)=ch, (TX)

GRR *
} = APF =K,

Within any one sector, can follow the same method just

outlined....



Review of quantum sheaf cohomology

In the case of our example,
one can show that in a sector of instanton degree (a,b),
the “classical’ ring in that sector is of the form

Sym-W/ (Qa+1 ,Qbﬂ)
where Q=det(Ay +By), Q=det(Cy + Dy)

Now, OPE’s can relate correlation functions in different
iInstanton degrees, and so, should map ideals to ideals.

To be compatible with those ideals,
<0>ab a a~b b<0Qa aQb b>a y
for some constants ¢,§ =>OPE's Q=¢q, O=g

— quantum sheaf cohomology rel'ns



Review of quantum sheaf cohomology

(General result: (Donagi, Guffin, Katz, ES, '11)
For any toric variety, and any def’ E of its tangent bundle,

0—-W ®0—®0(g,)—>E —0

*

Z

the chiral ring Is

Ha (det M(a) )Qg — qa

where the M's are matrices ot chiral operators built from *.



Review of quantum sheaf cohomology

So far, I've outlined mathematical computations of quantum
sheat cohomology, but GLSM-based methods also exist:

* Quantum cohomology ( (2,2) ): Morrison-Plesser ‘94
* Quantum sheaf cohomology ( (0,2) ): McOrist-Melnikov ‘07, ‘08

Brietly, for (0,2) case:

One computes quantum corrections to effective action of form

Leff — Jd9+2Ya log[Ha(det M(a))Qg /Qa:|
from which one derives H(detMm))Qg =4,

— these are g.s.c. rel'ns — match math’ computations



The Future

NEXT EXIT sl




Long-term

More general constructions of (0,2) mirrors, & related duals,
as current methods are limited

Generalize guantum sheaf cohomology computations to
arbitrary compact Calabi-Yau manifolds




Generalize quantum sheaf cohomology...
State of the art: computations on toric varieties
To do: compact CY'’s

Intermediate step: Grassmannians (work in progress)
Brietly, what we need are better computational methods.

Conventional GW tricks seem to revolve around idea that A
model is iIndependent of complex structure,
not necessarily true for A/2.

* McOrist-Melnikov '08 have argued an analogue for A/2

 Despite attempts to check (Garavuso-ES ‘13),
still not well-understood



Mathematics

Geometry:

Gromov-Witten
Donaldson-Thomas
guantum cohomology
etc

Homotopy, categories:
derived categories
stacks
derived spaces

categorical equivalence

L

Physics

Supersymmetric,
topological
guantum
field theories

D-branes
gauge theories
sigma models w/ potential

renormalization group flow



